On generalized conditional cumulative past inaccuracy measure

Amit Ghosh; Chanchal Kundu

Applications of Mathematics (2018)

  • Volume: 63, Issue: 2, page 167-193
  • ISSN: 0862-7940

Abstract

top
The notion of cumulative past inaccuracy (CPI) measure has recently been proposed in the literature as a generalization of cumulative past entropy (CPE) in univariate as well as bivariate setup. In this paper, we introduce the notion of CPI of order α and study the proposed measure for conditionally specified models of two components failed at different time instants, called generalized conditional CPI (GCCPI). Several properties, including the effect of monotone transformation and bounds of GCCPI are discussed. Furthermore, we characterize some bivariate distributions under the assumption of conditional proportional reversed hazard rate model. Finally, the role of GCCPI in reliability modeling has also been investigated for a real-life problem.

How to cite

top

Ghosh, Amit, and Kundu, Chanchal. "On generalized conditional cumulative past inaccuracy measure." Applications of Mathematics 63.2 (2018): 167-193. <http://eudml.org/doc/294335>.

@article{Ghosh2018,
abstract = {The notion of cumulative past inaccuracy (CPI) measure has recently been proposed in the literature as a generalization of cumulative past entropy (CPE) in univariate as well as bivariate setup. In this paper, we introduce the notion of CPI of order $\alpha $ and study the proposed measure for conditionally specified models of two components failed at different time instants, called generalized conditional CPI (GCCPI). Several properties, including the effect of monotone transformation and bounds of GCCPI are discussed. Furthermore, we characterize some bivariate distributions under the assumption of conditional proportional reversed hazard rate model. Finally, the role of GCCPI in reliability modeling has also been investigated for a real-life problem.},
author = {Ghosh, Amit, Kundu, Chanchal},
journal = {Applications of Mathematics},
keywords = {cumulative past inaccuracy; marginal and conditional past lifetimes; conditional proportional reversed hazard rate model; usual stochastic order},
language = {eng},
number = {2},
pages = {167-193},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On generalized conditional cumulative past inaccuracy measure},
url = {http://eudml.org/doc/294335},
volume = {63},
year = {2018},
}

TY - JOUR
AU - Ghosh, Amit
AU - Kundu, Chanchal
TI - On generalized conditional cumulative past inaccuracy measure
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 167
EP - 193
AB - The notion of cumulative past inaccuracy (CPI) measure has recently been proposed in the literature as a generalization of cumulative past entropy (CPE) in univariate as well as bivariate setup. In this paper, we introduce the notion of CPI of order $\alpha $ and study the proposed measure for conditionally specified models of two components failed at different time instants, called generalized conditional CPI (GCCPI). Several properties, including the effect of monotone transformation and bounds of GCCPI are discussed. Furthermore, we characterize some bivariate distributions under the assumption of conditional proportional reversed hazard rate model. Finally, the role of GCCPI in reliability modeling has also been investigated for a real-life problem.
LA - eng
KW - cumulative past inaccuracy; marginal and conditional past lifetimes; conditional proportional reversed hazard rate model; usual stochastic order
UR - http://eudml.org/doc/294335
ER -

References

top
  1. Abbasnejad, M., 10.5351/ckss.2011.18.6.787, Commun. Stat. Appl. Methods 18 (2011), 787-798. (2011) DOI10.5351/ckss.2011.18.6.787
  2. Ahmadi, J., Crescenzo, A. Di, Longobardi, M., 10.1239/aap/1449859804, Adv. Appl. Probab. 47 (2015), 1157-1174. (2015) Zbl1355.94022MR3433300DOI10.1239/aap/1449859804
  3. Akaike, H., Information measures and model selection, Bull. Int. Stat. Inst. 50 (1983), 277-290. (1983) Zbl0578.62059MR0820726
  4. Baratpour, S., Rad, A. H., 10.1080/03610926.2010.542857, Commun. Stat., Theory Methods 41 (2012), 1387-1396. (2012) Zbl1319.62095MR2902993DOI10.1080/03610926.2010.542857
  5. Burnham, K. P., Anderson, D. R., 10.1007/b97636, Springer, New York (2002). (2002) Zbl1005.62007MR1919620DOI10.1007/b97636
  6. Cahill, N. D., Schnabel, J. A., Noble, J. A., Hawkes, D. J., 10.1117/12.811585, Medical Imaging 2009 J. P. W. Pluim, B. M. Dawant Proceedings of SPIE 7259, Society of Photo-Optical Instrumentation Engineers, Washington (2009), Article ID 72590I. DOI10.1117/12.811585
  7. Choe, Y., Information criterion for minimum cross-entropy model selection, Available at https://arxiv.org/abs/1704.04315 (2017), 32 pages. (2017) 
  8. Crescenzo, A. Di, Longobardi, M., 10.1016/j.jspi.2009.05.038, J. Stat. Plann. Inference 139 (2009), 4072-4087. (2009) Zbl1172.94543MR2558351DOI10.1016/j.jspi.2009.05.038
  9. Crescenzo, A. Di, Longobardi, M., 10.1007/978-1-4614-6892-9_8, Stochastic Orders in Reliability and Risk H. Li, X. Li Lecture Notes in Statistics 208, Springer, New York (2013), 167-182. (2013) Zbl1312.62011MR3156874DOI10.1007/978-1-4614-6892-9_8
  10. Crescenzo, A. Di, Longobardi, M., 10.1002/asmb.2116, Appl. Stoch. Models Bus. Ind. 31 (2015), 875-891. (2015) MR3445978DOI10.1002/asmb.2116
  11. Ebrahimi, N., Soofi, E. S., Soyer, R., 10.1111/j.1751-5823.2010.00105.x, Int. Stat. Rev. 78 (2010), 383-412. (2010) MR2665834DOI10.1111/j.1751-5823.2010.00105.x
  12. Fraser, D. A. S., 10.1214/aoms/1177700061, Ann. Math. Stat. 36 (1965), 890-896. (1965) Zbl0141.35501MR0176550DOI10.1214/aoms/1177700061
  13. Ghosh, A., Kundu, C., 10.1007/s00362-017-0917-5, (to appear) in Stat. Pap. MR3795245DOI10.1007/s00362-017-0917-5
  14. Ghosh, A., Kundu, C., 10.1007/s00362-016-0804-5, (to appear) in Stat. Pap. DOI10.1007/s00362-016-0804-5
  15. Ghosh, A., Kundu, C., 10.1080/02331888.2017.1335315, Statistics 51 (2017), 1398-1418. (2017) Zbl06825550MR3734030DOI10.1080/02331888.2017.1335315
  16. Gumbel, E. J., 10.2307/2282259, J. Am. Stat. Assoc. 56 (1961), 335-349. (1961) Zbl0099.14502MR0158451DOI10.2307/2282259
  17. Jurafsky, D., Martin, J. H., Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, Prentice-Hall, Englewood Cliffs (2009). (2009) 
  18. Kayal, S., Sunoj, S. M., 10.1080/03610926.2016.1177083, Commun. Stat., Theory Methods 46 (2017), 8257-8268. (2017) Zbl06790749MR3660053DOI10.1080/03610926.2016.1177083
  19. Kent, J. T., 10.1093/biomet/69.1.19, Biometrika 69 (1982), 19-27. (1982) Zbl0485.62031MR0655667DOI10.1093/biomet/69.1.19
  20. Kent, J. T., 10.1093/biomet/70.1.163, Biometrika 70 (1983), 163-173. (1983) Zbl0521.62003MR0742986DOI10.1093/biomet/70.1.163
  21. Kerridge, D. F., Inaccuracy and inference, J. R. Stat. Soc., Ser. B 23 (1961), 184-194. (1961) Zbl0112.10302MR0123375
  22. Kotz, S., Balakrishnan, N., Johnson, N. L., 10.1002/0471722065, Wiley, New York (2000). (2000) Zbl0946.62001MR1788152DOI10.1002/0471722065
  23. Kullback, S., Leibler, R. A., 10.1214/aoms/1177729694, Ann. Math. Stat. 22 (1951), 79-86. (1951) Zbl0042.38403MR0039968DOI10.1214/aoms/1177729694
  24. Kundu, C., Crescenzo, A. Di, Longobardi, M., 10.1007/s00184-015-0557-5, Metrika 79 (2016), 335-356. (2016) Zbl1333.94025MR3473632DOI10.1007/s00184-015-0557-5
  25. Kundu, A., Kundu, C., 10.1080/03610926.2015.1080838, Commun. Stat., Theory Methods 46 (2017), 4163-4180. (2017) Zbl1368.62012MR3599701DOI10.1080/03610926.2015.1080838
  26. Kundu, A., Kundu, C., 10.1080/03610926.2017.1335412, Commun. Stat., Theory Methods 47 (2018), 1962-1977. (2018) MR3757723DOI10.1080/03610926.2017.1335412
  27. Kundu, A., Nanda, A. K., 10.1080/03610926.2013.824591, Commun. Stat., Theory Methods 45 (2016), 104-122. (2016) Zbl1338.60055MR3440373DOI10.1080/03610926.2013.824591
  28. Lawless, J. F., Statistical Models and Methods for Lifetime Data, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York (1982). (1982) Zbl0541.62081MR0640866
  29. Nair, N. U., Asha, G., Some characterizations based on bivariate reversed mean residual life, ProbStat Forum 1 (2008), 1-14. (2008) Zbl05633231
  30. Nath, P., 10.1007/BF02613380, Metrika 13 (1968), 123-135. (1968) Zbl0162.51101MR0238439DOI10.1007/BF02613380
  31. Navarro, J., Aguila, Y. del, Asadi, M., 10.1016/j.jspi.2009.07.015, J. Stat. Plann. Inference 140 (2010), 310-322. (2010) Zbl1177.62005MR2568141DOI10.1016/j.jspi.2009.07.015
  32. Navarro, J., Sunoj, S. M., Linu, N. N., 10.1080/03610926.2012.677925, Commun. Stat., Theory Methods 43 (2014), 1939-1948. (2014) Zbl06302741MR3196235DOI10.1080/03610926.2012.677925
  33. Park, S., Kim, I., 10.1016/j.spl.2014.07.020, Stat. Probab. Lett. 94 (2014), 170-175. (2014) Zbl1301.62047MR3257376DOI10.1016/j.spl.2014.07.020
  34. Park, S., Rao, M., Shin, D. W., 10.1016/j.spl.2012.06.015, Stat. Probab. Lett. 82 (2012), 2025-2032. (2012) Zbl1312.62012MR2970308DOI10.1016/j.spl.2012.06.015
  35. Psarrakos, G., Toomaj, A., 10.1016/j.cam.2016.06.037, J. Comput. Appl. Math. 309 (2017), 186-199. (2017) Zbl06626242MR3539777DOI10.1016/j.cam.2016.06.037
  36. Rao, M., Chen, Y., Vemuri, B. C., Wang, F., 10.1109/TIT.2004.828057, IEEE Trans. Inf. Theory 50 (2004), 1220-1228. (2004) Zbl1302.94025MR2094878DOI10.1109/TIT.2004.828057
  37. Rényi, A., On measures of entropy and information, Proc. 4th Berkeley Symp. Math. Stat. Probab. 1 Univ. California Press, Berkeley (1961), 547-561. (1961) Zbl0106.33001MR0132570
  38. Roy, D., 10.14490/jjss.32.239, J. Jpn. Stat. Soc. 32 (2002), 239-245. (2002) Zbl1047.62050MR1960368DOI10.14490/jjss.32.239
  39. Sankaran, P. G., Kundu, D., 10.1080/02331888.2012.719521, Statistics 48 (2014), 241-255. (2014) Zbl1367.62282MR3175768DOI10.1080/02331888.2012.719521
  40. Shaked, M., Shanthikumar, J. G., 10.1007/978-0-387-34675-5, Springer Series in Statistics, Springer, New York (2007). (2007) Zbl1111.62016MR2265633DOI10.1007/978-0-387-34675-5
  41. Shannon, C. E., 10.1002/j.1538-7305.1948.tb01338.x, Bell Syst. Tech. J. 27 (1948), 379-423, 623-656. (1948) Zbl1154.94303MR0026286DOI10.1002/j.1538-7305.1948.tb01338.x
  42. Shi, J., Cai, Y., Zhu, J., Zhong, J., Wang, F., 10.1007/s11517-012-1010-9, Medical & Biological Engineering & Computing 51 (2013), 417-427. (2013) DOI10.1007/s11517-012-1010-9
  43. Sunoj, S. M., Linu, M. N., 10.1080/02331888.2010.494730, Statistics 46 (2012), 41-56. (2012) Zbl1307.62240MR2889011DOI10.1080/02331888.2010.494730
  44. Toomaj, A., Sunoj, S. M., Navarro, J., 10.1017/jpr.2017.6, J. Appl. Probab. 54 (2017), 379-393. (2017) MR3668472DOI10.1017/jpr.2017.6
  45. Wang, F., Vemuri, B. C., Rao, M., Chen, Y., 10.1007/978-3-540-45087-0_33, Information Processing in Medical Imaging C. Taylor, J. A. Noble Lecture Notes in Computer Science 2732, Springer, Berlin (2003), 388-400. (2003) DOI10.1007/978-3-540-45087-0_33

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.