On generalized conditional cumulative past inaccuracy measure
Applications of Mathematics (2018)
- Volume: 63, Issue: 2, page 167-193
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topGhosh, Amit, and Kundu, Chanchal. "On generalized conditional cumulative past inaccuracy measure." Applications of Mathematics 63.2 (2018): 167-193. <http://eudml.org/doc/294335>.
@article{Ghosh2018,
abstract = {The notion of cumulative past inaccuracy (CPI) measure has recently been proposed in the literature as a generalization of cumulative past entropy (CPE) in univariate as well as bivariate setup. In this paper, we introduce the notion of CPI of order $\alpha $ and study the proposed measure for conditionally specified models of two components failed at different time instants, called generalized conditional CPI (GCCPI). Several properties, including the effect of monotone transformation and bounds of GCCPI are discussed. Furthermore, we characterize some bivariate distributions under the assumption of conditional proportional reversed hazard rate model. Finally, the role of GCCPI in reliability modeling has also been investigated for a real-life problem.},
author = {Ghosh, Amit, Kundu, Chanchal},
journal = {Applications of Mathematics},
keywords = {cumulative past inaccuracy; marginal and conditional past lifetimes; conditional proportional reversed hazard rate model; usual stochastic order},
language = {eng},
number = {2},
pages = {167-193},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On generalized conditional cumulative past inaccuracy measure},
url = {http://eudml.org/doc/294335},
volume = {63},
year = {2018},
}
TY - JOUR
AU - Ghosh, Amit
AU - Kundu, Chanchal
TI - On generalized conditional cumulative past inaccuracy measure
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 167
EP - 193
AB - The notion of cumulative past inaccuracy (CPI) measure has recently been proposed in the literature as a generalization of cumulative past entropy (CPE) in univariate as well as bivariate setup. In this paper, we introduce the notion of CPI of order $\alpha $ and study the proposed measure for conditionally specified models of two components failed at different time instants, called generalized conditional CPI (GCCPI). Several properties, including the effect of monotone transformation and bounds of GCCPI are discussed. Furthermore, we characterize some bivariate distributions under the assumption of conditional proportional reversed hazard rate model. Finally, the role of GCCPI in reliability modeling has also been investigated for a real-life problem.
LA - eng
KW - cumulative past inaccuracy; marginal and conditional past lifetimes; conditional proportional reversed hazard rate model; usual stochastic order
UR - http://eudml.org/doc/294335
ER -
References
top- Abbasnejad, M., 10.5351/ckss.2011.18.6.787, Commun. Stat. Appl. Methods 18 (2011), 787-798. (2011) DOI10.5351/ckss.2011.18.6.787
- Ahmadi, J., Crescenzo, A. Di, Longobardi, M., 10.1239/aap/1449859804, Adv. Appl. Probab. 47 (2015), 1157-1174. (2015) Zbl1355.94022MR3433300DOI10.1239/aap/1449859804
- Akaike, H., Information measures and model selection, Bull. Int. Stat. Inst. 50 (1983), 277-290. (1983) Zbl0578.62059MR0820726
- Baratpour, S., Rad, A. H., 10.1080/03610926.2010.542857, Commun. Stat., Theory Methods 41 (2012), 1387-1396. (2012) Zbl1319.62095MR2902993DOI10.1080/03610926.2010.542857
- Burnham, K. P., Anderson, D. R., 10.1007/b97636, Springer, New York (2002). (2002) Zbl1005.62007MR1919620DOI10.1007/b97636
- Cahill, N. D., Schnabel, J. A., Noble, J. A., Hawkes, D. J., 10.1117/12.811585, Medical Imaging 2009 J. P. W. Pluim, B. M. Dawant Proceedings of SPIE 7259, Society of Photo-Optical Instrumentation Engineers, Washington (2009), Article ID 72590I. DOI10.1117/12.811585
- Choe, Y., Information criterion for minimum cross-entropy model selection, Available at https://arxiv.org/abs/1704.04315 (2017), 32 pages. (2017)
- Crescenzo, A. Di, Longobardi, M., 10.1016/j.jspi.2009.05.038, J. Stat. Plann. Inference 139 (2009), 4072-4087. (2009) Zbl1172.94543MR2558351DOI10.1016/j.jspi.2009.05.038
- Crescenzo, A. Di, Longobardi, M., 10.1007/978-1-4614-6892-9_8, Stochastic Orders in Reliability and Risk H. Li, X. Li Lecture Notes in Statistics 208, Springer, New York (2013), 167-182. (2013) Zbl1312.62011MR3156874DOI10.1007/978-1-4614-6892-9_8
- Crescenzo, A. Di, Longobardi, M., 10.1002/asmb.2116, Appl. Stoch. Models Bus. Ind. 31 (2015), 875-891. (2015) MR3445978DOI10.1002/asmb.2116
- Ebrahimi, N., Soofi, E. S., Soyer, R., 10.1111/j.1751-5823.2010.00105.x, Int. Stat. Rev. 78 (2010), 383-412. (2010) MR2665834DOI10.1111/j.1751-5823.2010.00105.x
- Fraser, D. A. S., 10.1214/aoms/1177700061, Ann. Math. Stat. 36 (1965), 890-896. (1965) Zbl0141.35501MR0176550DOI10.1214/aoms/1177700061
- Ghosh, A., Kundu, C., 10.1007/s00362-017-0917-5, (to appear) in Stat. Pap. MR3795245DOI10.1007/s00362-017-0917-5
- Ghosh, A., Kundu, C., 10.1007/s00362-016-0804-5, (to appear) in Stat. Pap. DOI10.1007/s00362-016-0804-5
- Ghosh, A., Kundu, C., 10.1080/02331888.2017.1335315, Statistics 51 (2017), 1398-1418. (2017) Zbl06825550MR3734030DOI10.1080/02331888.2017.1335315
- Gumbel, E. J., 10.2307/2282259, J. Am. Stat. Assoc. 56 (1961), 335-349. (1961) Zbl0099.14502MR0158451DOI10.2307/2282259
- Jurafsky, D., Martin, J. H., Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, Prentice-Hall, Englewood Cliffs (2009). (2009)
- Kayal, S., Sunoj, S. M., 10.1080/03610926.2016.1177083, Commun. Stat., Theory Methods 46 (2017), 8257-8268. (2017) Zbl06790749MR3660053DOI10.1080/03610926.2016.1177083
- Kent, J. T., 10.1093/biomet/69.1.19, Biometrika 69 (1982), 19-27. (1982) Zbl0485.62031MR0655667DOI10.1093/biomet/69.1.19
- Kent, J. T., 10.1093/biomet/70.1.163, Biometrika 70 (1983), 163-173. (1983) Zbl0521.62003MR0742986DOI10.1093/biomet/70.1.163
- Kerridge, D. F., Inaccuracy and inference, J. R. Stat. Soc., Ser. B 23 (1961), 184-194. (1961) Zbl0112.10302MR0123375
- Kotz, S., Balakrishnan, N., Johnson, N. L., 10.1002/0471722065, Wiley, New York (2000). (2000) Zbl0946.62001MR1788152DOI10.1002/0471722065
- Kullback, S., Leibler, R. A., 10.1214/aoms/1177729694, Ann. Math. Stat. 22 (1951), 79-86. (1951) Zbl0042.38403MR0039968DOI10.1214/aoms/1177729694
- Kundu, C., Crescenzo, A. Di, Longobardi, M., 10.1007/s00184-015-0557-5, Metrika 79 (2016), 335-356. (2016) Zbl1333.94025MR3473632DOI10.1007/s00184-015-0557-5
- Kundu, A., Kundu, C., 10.1080/03610926.2015.1080838, Commun. Stat., Theory Methods 46 (2017), 4163-4180. (2017) Zbl1368.62012MR3599701DOI10.1080/03610926.2015.1080838
- Kundu, A., Kundu, C., 10.1080/03610926.2017.1335412, Commun. Stat., Theory Methods 47 (2018), 1962-1977. (2018) MR3757723DOI10.1080/03610926.2017.1335412
- Kundu, A., Nanda, A. K., 10.1080/03610926.2013.824591, Commun. Stat., Theory Methods 45 (2016), 104-122. (2016) Zbl1338.60055MR3440373DOI10.1080/03610926.2013.824591
- Lawless, J. F., Statistical Models and Methods for Lifetime Data, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York (1982). (1982) Zbl0541.62081MR0640866
- Nair, N. U., Asha, G., Some characterizations based on bivariate reversed mean residual life, ProbStat Forum 1 (2008), 1-14. (2008) Zbl05633231
- Nath, P., 10.1007/BF02613380, Metrika 13 (1968), 123-135. (1968) Zbl0162.51101MR0238439DOI10.1007/BF02613380
- Navarro, J., Aguila, Y. del, Asadi, M., 10.1016/j.jspi.2009.07.015, J. Stat. Plann. Inference 140 (2010), 310-322. (2010) Zbl1177.62005MR2568141DOI10.1016/j.jspi.2009.07.015
- Navarro, J., Sunoj, S. M., Linu, N. N., 10.1080/03610926.2012.677925, Commun. Stat., Theory Methods 43 (2014), 1939-1948. (2014) Zbl06302741MR3196235DOI10.1080/03610926.2012.677925
- Park, S., Kim, I., 10.1016/j.spl.2014.07.020, Stat. Probab. Lett. 94 (2014), 170-175. (2014) Zbl1301.62047MR3257376DOI10.1016/j.spl.2014.07.020
- Park, S., Rao, M., Shin, D. W., 10.1016/j.spl.2012.06.015, Stat. Probab. Lett. 82 (2012), 2025-2032. (2012) Zbl1312.62012MR2970308DOI10.1016/j.spl.2012.06.015
- Psarrakos, G., Toomaj, A., 10.1016/j.cam.2016.06.037, J. Comput. Appl. Math. 309 (2017), 186-199. (2017) Zbl06626242MR3539777DOI10.1016/j.cam.2016.06.037
- Rao, M., Chen, Y., Vemuri, B. C., Wang, F., 10.1109/TIT.2004.828057, IEEE Trans. Inf. Theory 50 (2004), 1220-1228. (2004) Zbl1302.94025MR2094878DOI10.1109/TIT.2004.828057
- Rényi, A., On measures of entropy and information, Proc. 4th Berkeley Symp. Math. Stat. Probab. 1 Univ. California Press, Berkeley (1961), 547-561. (1961) Zbl0106.33001MR0132570
- Roy, D., 10.14490/jjss.32.239, J. Jpn. Stat. Soc. 32 (2002), 239-245. (2002) Zbl1047.62050MR1960368DOI10.14490/jjss.32.239
- Sankaran, P. G., Kundu, D., 10.1080/02331888.2012.719521, Statistics 48 (2014), 241-255. (2014) Zbl1367.62282MR3175768DOI10.1080/02331888.2012.719521
- Shaked, M., Shanthikumar, J. G., 10.1007/978-0-387-34675-5, Springer Series in Statistics, Springer, New York (2007). (2007) Zbl1111.62016MR2265633DOI10.1007/978-0-387-34675-5
- Shannon, C. E., 10.1002/j.1538-7305.1948.tb01338.x, Bell Syst. Tech. J. 27 (1948), 379-423, 623-656. (1948) Zbl1154.94303MR0026286DOI10.1002/j.1538-7305.1948.tb01338.x
- Shi, J., Cai, Y., Zhu, J., Zhong, J., Wang, F., 10.1007/s11517-012-1010-9, Medical & Biological Engineering & Computing 51 (2013), 417-427. (2013) DOI10.1007/s11517-012-1010-9
- Sunoj, S. M., Linu, M. N., 10.1080/02331888.2010.494730, Statistics 46 (2012), 41-56. (2012) Zbl1307.62240MR2889011DOI10.1080/02331888.2010.494730
- Toomaj, A., Sunoj, S. M., Navarro, J., 10.1017/jpr.2017.6, J. Appl. Probab. 54 (2017), 379-393. (2017) MR3668472DOI10.1017/jpr.2017.6
- Wang, F., Vemuri, B. C., Rao, M., Chen, Y., 10.1007/978-3-540-45087-0_33, Information Processing in Medical Imaging C. Taylor, J. A. Noble Lecture Notes in Computer Science 2732, Springer, Berlin (2003), 388-400. (2003) DOI10.1007/978-3-540-45087-0_33
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.