Expected utility maximization and conditional value-at-risk deviation-based Sharpe ratio in dynamic stochastic portfolio optimization

Soňa Kilianová; Daniel Ševčovič

Kybernetika (2018)

  • Volume: 54, Issue: 6, page 1167-1183
  • ISSN: 0023-5954

Abstract

top
In this paper we investigate the expected terminal utility maximization approach for a dynamic stochastic portfolio optimization problem. We solve it numerically by solving an evolutionary Hamilton-Jacobi-Bellman equation which is transformed by means of the Riccati transformation. We examine the dependence of the results on the shape of a chosen utility function in regard to the associated risk aversion level. We define the Conditional value-at-risk deviation ( C V a R D ) based Sharpe ratio for measuring risk-adjusted performance of a dynamic portfolio. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 Index and we evaluate and analyze the dependence of the C V a R D -based Sharpe ratio on the utility function and the associated risk aversion level.

How to cite

top

Kilianová, Soňa, and Ševčovič, Daniel. "Expected utility maximization and conditional value-at-risk deviation-based Sharpe ratio in dynamic stochastic portfolio optimization." Kybernetika 54.6 (2018): 1167-1183. <http://eudml.org/doc/294336>.

@article{Kilianová2018,
abstract = {In this paper we investigate the expected terminal utility maximization approach for a dynamic stochastic portfolio optimization problem. We solve it numerically by solving an evolutionary Hamilton-Jacobi-Bellman equation which is transformed by means of the Riccati transformation. We examine the dependence of the results on the shape of a chosen utility function in regard to the associated risk aversion level. We define the Conditional value-at-risk deviation ($CVaRD$) based Sharpe ratio for measuring risk-adjusted performance of a dynamic portfolio. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 Index and we evaluate and analyze the dependence of the $CVaRD$-based Sharpe ratio on the utility function and the associated risk aversion level.},
author = {Kilianová, Soňa, Ševčovič, Daniel},
journal = {Kybernetika},
keywords = {dynamic stochastic portfolio optimization; Hamilton-Jacobi-Bellman equation; Conditional value-at-risk; $CVaRD$-based Sharpe ratio},
language = {eng},
number = {6},
pages = {1167-1183},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Expected utility maximization and conditional value-at-risk deviation-based Sharpe ratio in dynamic stochastic portfolio optimization},
url = {http://eudml.org/doc/294336},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Kilianová, Soňa
AU - Ševčovič, Daniel
TI - Expected utility maximization and conditional value-at-risk deviation-based Sharpe ratio in dynamic stochastic portfolio optimization
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 6
SP - 1167
EP - 1183
AB - In this paper we investigate the expected terminal utility maximization approach for a dynamic stochastic portfolio optimization problem. We solve it numerically by solving an evolutionary Hamilton-Jacobi-Bellman equation which is transformed by means of the Riccati transformation. We examine the dependence of the results on the shape of a chosen utility function in regard to the associated risk aversion level. We define the Conditional value-at-risk deviation ($CVaRD$) based Sharpe ratio for measuring risk-adjusted performance of a dynamic portfolio. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 Index and we evaluate and analyze the dependence of the $CVaRD$-based Sharpe ratio on the utility function and the associated risk aversion level.
LA - eng
KW - dynamic stochastic portfolio optimization; Hamilton-Jacobi-Bellman equation; Conditional value-at-risk; $CVaRD$-based Sharpe ratio
UR - http://eudml.org/doc/294336
ER -

References

top
  1. Abe, R., Ishimura, N., 10.3792/pjaa.84.11, Proc. Japan Acad. Ser. A 84 (2008), 1, 11-14. MR2381178DOI10.3792/pjaa.84.11
  2. Agarwal, V., Naik, N. Y., 10.1093/rfs/hhg044, Rev. Financ. Stud. 17 (2004), 1, 63-98. DOI10.1093/rfs/hhg044
  3. Andrieu, L., Lara, M. De, Seck, B., Conditional Value-at-Risk Constraint and Loss Aversion Utility Functions., https://arxiv.org/pdf/0906.3425.pdf 
  4. Arrow, K. J., Aspects of the theory of risk bearing., In: The Theory of Risk Aversion. Helsinki: Yrjo Jahnssonin Saatio. (Reprinted in: Essays in the Theory of Risk Bearing, Markham Publ. Co., Chicago, 1971), (1965), pp. 90-109. MR0363427
  5. Aubin, J. P., 10.1287/moor.9.1.87, Math. Oper. Res. 9 (1984), 87-111. MR0736641DOI10.1287/moor.9.1.87
  6. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K., 10.1007/978-3-0348-6328-5, Birkhauser Verlag, Basel-Boston, Mass., 1983. MR0701243DOI10.1007/978-3-0348-6328-5
  7. Bertsekas, D. P., 10.1016/s0076-5392(08)x6050-3, Academic Press, New York 1976. MR0688509DOI10.1016/s0076-5392(08)x6050-3
  8. Biglova, A., Ortobelli, S., Rachev, S., Stoyanov, S., 10.3905/jpm.2004.443328, J. Portfolio Management 31 (2004), 1, 103-112. DOI10.3905/jpm.2004.443328
  9. Browne, S., 10.1287/mnsc.46.9.1188.12233, Management Sci. 46 (2000), 9, 1188-1199. DOI10.1287/mnsc.46.9.1188.12233
  10. Denuit, M., Dhaene, J., Goovaerts, M., Kaas, R., Laeven, R., 10.1524/stnd.2006.24.1.1, Statist. Decisions 24 (2006), 1-25. MR2323186DOI10.1524/stnd.2006.24.1.1
  11. Farinelli, S., Ferreira, M., Rosselloc, D., Thoeny, M., Tibiletti, L., 10.1016/j.jbankfin.2007.12.026, J. Banking Finance 32 (2008), 10, 2057-2063. DOI10.1016/j.jbankfin.2007.12.026
  12. Huang, Y., Forsyth, P. A., Labahn, G., 10.1137/100812641, SIAM J. Numer. Anal. 50 (2012), 4, 1861-1882. MR3022201DOI10.1137/100812641
  13. Ishimura, N., Koleva, M. N., Vulkov, L. G., 10.1063/1.3526637, AIP Conference Proceedings 1301 (2010), 1, 387-394. DOI10.1063/1.3526637
  14. Ishimura, N., Ševčovič, D., 10.1007/s13160-012-0087-8, Japan J. Ind. Appl. Math. 30 (2013), 1, 51-67. MR3022806DOI10.1007/s13160-012-0087-8
  15. Karatzas, I., Lehoczky, J. P., Sethi, S. P., Shreve, S., 10.1287/moor.11.2.261, Math. Oper. Res. 11 (1986), 2, 261-294. MR0844005DOI10.1287/moor.11.2.261
  16. Kilianová, S., Ševčovič, D., 10.21914/anziamj.v55i0.6816, ANZIAM J. 55 (2013), 14-38. MR3144202DOI10.21914/anziamj.v55i0.6816
  17. Kilianová, S., Trnovská, M., 10.1080/00207160.2013.871542, Int. J. Comput. Math. 93 (2016), 725-734. MR3483306DOI10.1080/00207160.2013.871542
  18. Klatte, D., 10.1080/02331938508843080, Optim. J. Math. Program. Oper. Res. 16 (1985), 6, 819-831. MR0814211DOI10.1080/02331938508843080
  19. Koleva, M. N., 10.1063/1.3659948, AIP Confer. Proc. 1404 (2011), 1, 457-463. DOI10.1063/1.3659948
  20. Koleva, M. N., Vulkov, L., 10.1016/j.mcm.2013.01.008, Math. Comput. Modell. 57 (2013), 2564-2575. MR3068748DOI10.1016/j.mcm.2013.01.008
  21. Kútik, P., Mikula, K., 10.1007/978-3-642-20671-9_68, In: Finite Volumes for Complex Applications VI, Problems and Perspectives (J. Fořt, J. Fürst, J. Halama, R. Herbin, and F. Hubert, eds.), Springer Proc. Math. 4 (2011), pp. 643-651. MR2882342DOI10.1007/978-3-642-20671-9_68
  22. LeVeque, R. J., 10.1017/cbo9780511791253, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge 2002. MR1925043DOI10.1017/cbo9780511791253
  23. Lin, S., Ohnishi, M., Optimal portfolio selection by CVaR based Sharpe ratio genetic algorithm approach., Sci. Math. Japon. Online e-2006 (2006), 1229-1251. MR2300341
  24. Macová, Z., Ševčovič, D., Weakly nonlinear analysis of the Hamilton-Jacobi-Bellman equation arising from pension savings management., Int. J. Numer. Anal. Model. 7 (2010), 4, 619-638. MR2644295
  25. McNeil, A. J., Frey, R., Embrechts, P., 10.1007/s11408-006-0016-4, Princeton Series in Finance, Princeton University Press, 2005. MR2175089DOI10.1007/s11408-006-0016-4
  26. Merton, R. C., 10.1016/0022-0531(71)90038-x, J. Economic Theory 71 (1971), 373-413. MR0456373DOI10.1016/0022-0531(71)90038-x
  27. Milgrom, P., Segal, I., 10.1111/1468-0262.00296, Econometrica 70 (2002), 2, 583-601. MR1913824DOI10.1111/1468-0262.00296
  28. Musiela, M., Zariphopoulou, T., 10.1007/s00780-003-0112-5, Finance Stochast. 8 (2004), 2, 229-239. MR2048829DOI10.1007/s00780-003-0112-5
  29. Muthuraman, K., Kumar, S., 10.1111/j.1467-9965.2006.00273.x, Math. Finance 16 (2006), 2, 301-335. MR2212268DOI10.1111/j.1467-9965.2006.00273.x
  30. Pflug, G. Ch., Römisch, W., 10.1142/6478, World Scientific Publushing, 2007. MR2424523DOI10.1142/6478
  31. Post, T., Fang, Y., Kopa, M., 10.1287/mnsc.2014.1960, Management Sci. 61 (2015), 1615-1629. MR0668272DOI10.1287/mnsc.2014.1960
  32. Pratt, J. W., 10.2307/1913738, Econometrica. 32 (1964), 1-2, 122-136. Zbl0267.90010DOI10.2307/1913738
  33. Protter, M. H., Weinberger, H. F., 10.1007/978-1-4612-5282-5, Springer-Verlag, New York 1984. MR0762825DOI10.1007/978-1-4612-5282-5
  34. Reisinger, C., Witte, J. H., 10.1137/110823328, SIAM J. Financ. Math. 3 (2012), 459-478. MR2968042DOI10.1137/110823328
  35. Seck, B., Andrieu, L., Lara, M. De, 10.1007/s11238-011-9255-6, Theory Decision. 72 (2012), 2, 257-271. MR2878102DOI10.1007/s11238-011-9255-6
  36. Sharpe, W. F., 10.3905/jpm.1994.409501, J. Portfolio Management 21 (1994), 1, 49-58. DOI10.3905/jpm.1994.409501
  37. Ševčovič, D., Stehlíková, B., Mikula, K., Analytical and Numerical Methods for Pricing Financial Derivatives., Nova Science Publishers, Inc., Hauppauge 2011. 
  38. Tourin, A., Zariphopoulou, T., 10.1007/bf01299457, Comput. Econ. 7 (1994), 4, 287-307. MR1318095DOI10.1007/bf01299457
  39. Vickson, R. G., 10.2307/2330272, J. Financial Quantitative Analysis 10 (1975), 799-811. DOI10.2307/2330272
  40. Wiesinger, A., Risk-Adjusted Performance Measurement State of the Art., Bachelor Thesis of the University of St. Gallen School of Business Administration, Economics, Law and Social Sciences (HSG), 2010. 
  41. Xia, J., 10.1137/10080871x, J. Control Optim. 49 (2011), 5, 1916-1937. MR2837505DOI10.1137/10080871x
  42. Zariphopoulou, T., 10.1137/s0363012991218827, SIAM J. Control Optim. 32 (1994), 1, 59-85. MR1255960DOI10.1137/s0363012991218827
  43. Zheng, H., 10.1007/s00186-008-0234-9, Math. Meth. Oper. Res. 70 (2009), 1, 129-148. MR2529428DOI10.1007/s00186-008-0234-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.