Expected utility maximization and conditional value-at-risk deviation-based Sharpe ratio in dynamic stochastic portfolio optimization
Soňa Kilianová; Daniel Ševčovič
Kybernetika (2018)
- Volume: 54, Issue: 6, page 1167-1183
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKilianová, Soňa, and Ševčovič, Daniel. "Expected utility maximization and conditional value-at-risk deviation-based Sharpe ratio in dynamic stochastic portfolio optimization." Kybernetika 54.6 (2018): 1167-1183. <http://eudml.org/doc/294336>.
@article{Kilianová2018,
abstract = {In this paper we investigate the expected terminal utility maximization approach for a dynamic stochastic portfolio optimization problem. We solve it numerically by solving an evolutionary Hamilton-Jacobi-Bellman equation which is transformed by means of the Riccati transformation. We examine the dependence of the results on the shape of a chosen utility function in regard to the associated risk aversion level. We define the Conditional value-at-risk deviation ($CVaRD$) based Sharpe ratio for measuring risk-adjusted performance of a dynamic portfolio. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 Index and we evaluate and analyze the dependence of the $CVaRD$-based Sharpe ratio on the utility function and the associated risk aversion level.},
author = {Kilianová, Soňa, Ševčovič, Daniel},
journal = {Kybernetika},
keywords = {dynamic stochastic portfolio optimization; Hamilton-Jacobi-Bellman equation; Conditional value-at-risk; $CVaRD$-based Sharpe ratio},
language = {eng},
number = {6},
pages = {1167-1183},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Expected utility maximization and conditional value-at-risk deviation-based Sharpe ratio in dynamic stochastic portfolio optimization},
url = {http://eudml.org/doc/294336},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Kilianová, Soňa
AU - Ševčovič, Daniel
TI - Expected utility maximization and conditional value-at-risk deviation-based Sharpe ratio in dynamic stochastic portfolio optimization
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 6
SP - 1167
EP - 1183
AB - In this paper we investigate the expected terminal utility maximization approach for a dynamic stochastic portfolio optimization problem. We solve it numerically by solving an evolutionary Hamilton-Jacobi-Bellman equation which is transformed by means of the Riccati transformation. We examine the dependence of the results on the shape of a chosen utility function in regard to the associated risk aversion level. We define the Conditional value-at-risk deviation ($CVaRD$) based Sharpe ratio for measuring risk-adjusted performance of a dynamic portfolio. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 Index and we evaluate and analyze the dependence of the $CVaRD$-based Sharpe ratio on the utility function and the associated risk aversion level.
LA - eng
KW - dynamic stochastic portfolio optimization; Hamilton-Jacobi-Bellman equation; Conditional value-at-risk; $CVaRD$-based Sharpe ratio
UR - http://eudml.org/doc/294336
ER -
References
top- Abe, R., Ishimura, N., 10.3792/pjaa.84.11, Proc. Japan Acad. Ser. A 84 (2008), 1, 11-14. MR2381178DOI10.3792/pjaa.84.11
- Agarwal, V., Naik, N. Y., 10.1093/rfs/hhg044, Rev. Financ. Stud. 17 (2004), 1, 63-98. DOI10.1093/rfs/hhg044
- Andrieu, L., Lara, M. De, Seck, B., Conditional Value-at-Risk Constraint and Loss Aversion Utility Functions., https://arxiv.org/pdf/0906.3425.pdf
- Arrow, K. J., Aspects of the theory of risk bearing., In: The Theory of Risk Aversion. Helsinki: Yrjo Jahnssonin Saatio. (Reprinted in: Essays in the Theory of Risk Bearing, Markham Publ. Co., Chicago, 1971), (1965), pp. 90-109. MR0363427
- Aubin, J. P., 10.1287/moor.9.1.87, Math. Oper. Res. 9 (1984), 87-111. MR0736641DOI10.1287/moor.9.1.87
- Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K., 10.1007/978-3-0348-6328-5, Birkhauser Verlag, Basel-Boston, Mass., 1983. MR0701243DOI10.1007/978-3-0348-6328-5
- Bertsekas, D. P., 10.1016/s0076-5392(08)x6050-3, Academic Press, New York 1976. MR0688509DOI10.1016/s0076-5392(08)x6050-3
- Biglova, A., Ortobelli, S., Rachev, S., Stoyanov, S., 10.3905/jpm.2004.443328, J. Portfolio Management 31 (2004), 1, 103-112. DOI10.3905/jpm.2004.443328
- Browne, S., 10.1287/mnsc.46.9.1188.12233, Management Sci. 46 (2000), 9, 1188-1199. DOI10.1287/mnsc.46.9.1188.12233
- Denuit, M., Dhaene, J., Goovaerts, M., Kaas, R., Laeven, R., 10.1524/stnd.2006.24.1.1, Statist. Decisions 24 (2006), 1-25. MR2323186DOI10.1524/stnd.2006.24.1.1
- Farinelli, S., Ferreira, M., Rosselloc, D., Thoeny, M., Tibiletti, L., 10.1016/j.jbankfin.2007.12.026, J. Banking Finance 32 (2008), 10, 2057-2063. DOI10.1016/j.jbankfin.2007.12.026
- Huang, Y., Forsyth, P. A., Labahn, G., 10.1137/100812641, SIAM J. Numer. Anal. 50 (2012), 4, 1861-1882. MR3022201DOI10.1137/100812641
- Ishimura, N., Koleva, M. N., Vulkov, L. G., 10.1063/1.3526637, AIP Conference Proceedings 1301 (2010), 1, 387-394. DOI10.1063/1.3526637
- Ishimura, N., Ševčovič, D., 10.1007/s13160-012-0087-8, Japan J. Ind. Appl. Math. 30 (2013), 1, 51-67. MR3022806DOI10.1007/s13160-012-0087-8
- Karatzas, I., Lehoczky, J. P., Sethi, S. P., Shreve, S., 10.1287/moor.11.2.261, Math. Oper. Res. 11 (1986), 2, 261-294. MR0844005DOI10.1287/moor.11.2.261
- Kilianová, S., Ševčovič, D., 10.21914/anziamj.v55i0.6816, ANZIAM J. 55 (2013), 14-38. MR3144202DOI10.21914/anziamj.v55i0.6816
- Kilianová, S., Trnovská, M., 10.1080/00207160.2013.871542, Int. J. Comput. Math. 93 (2016), 725-734. MR3483306DOI10.1080/00207160.2013.871542
- Klatte, D., 10.1080/02331938508843080, Optim. J. Math. Program. Oper. Res. 16 (1985), 6, 819-831. MR0814211DOI10.1080/02331938508843080
- Koleva, M. N., 10.1063/1.3659948, AIP Confer. Proc. 1404 (2011), 1, 457-463. DOI10.1063/1.3659948
- Koleva, M. N., Vulkov, L., 10.1016/j.mcm.2013.01.008, Math. Comput. Modell. 57 (2013), 2564-2575. MR3068748DOI10.1016/j.mcm.2013.01.008
- Kútik, P., Mikula, K., 10.1007/978-3-642-20671-9_68, In: Finite Volumes for Complex Applications VI, Problems and Perspectives (J. Fořt, J. Fürst, J. Halama, R. Herbin, and F. Hubert, eds.), Springer Proc. Math. 4 (2011), pp. 643-651. MR2882342DOI10.1007/978-3-642-20671-9_68
- LeVeque, R. J., 10.1017/cbo9780511791253, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge 2002. MR1925043DOI10.1017/cbo9780511791253
- Lin, S., Ohnishi, M., Optimal portfolio selection by CVaR based Sharpe ratio genetic algorithm approach., Sci. Math. Japon. Online e-2006 (2006), 1229-1251. MR2300341
- Macová, Z., Ševčovič, D., Weakly nonlinear analysis of the Hamilton-Jacobi-Bellman equation arising from pension savings management., Int. J. Numer. Anal. Model. 7 (2010), 4, 619-638. MR2644295
- McNeil, A. J., Frey, R., Embrechts, P., 10.1007/s11408-006-0016-4, Princeton Series in Finance, Princeton University Press, 2005. MR2175089DOI10.1007/s11408-006-0016-4
- Merton, R. C., 10.1016/0022-0531(71)90038-x, J. Economic Theory 71 (1971), 373-413. MR0456373DOI10.1016/0022-0531(71)90038-x
- Milgrom, P., Segal, I., 10.1111/1468-0262.00296, Econometrica 70 (2002), 2, 583-601. MR1913824DOI10.1111/1468-0262.00296
- Musiela, M., Zariphopoulou, T., 10.1007/s00780-003-0112-5, Finance Stochast. 8 (2004), 2, 229-239. MR2048829DOI10.1007/s00780-003-0112-5
- Muthuraman, K., Kumar, S., 10.1111/j.1467-9965.2006.00273.x, Math. Finance 16 (2006), 2, 301-335. MR2212268DOI10.1111/j.1467-9965.2006.00273.x
- Pflug, G. Ch., Römisch, W., 10.1142/6478, World Scientific Publushing, 2007. MR2424523DOI10.1142/6478
- Post, T., Fang, Y., Kopa, M., 10.1287/mnsc.2014.1960, Management Sci. 61 (2015), 1615-1629. MR0668272DOI10.1287/mnsc.2014.1960
- Pratt, J. W., 10.2307/1913738, Econometrica. 32 (1964), 1-2, 122-136. Zbl0267.90010DOI10.2307/1913738
- Protter, M. H., Weinberger, H. F., 10.1007/978-1-4612-5282-5, Springer-Verlag, New York 1984. MR0762825DOI10.1007/978-1-4612-5282-5
- Reisinger, C., Witte, J. H., 10.1137/110823328, SIAM J. Financ. Math. 3 (2012), 459-478. MR2968042DOI10.1137/110823328
- Seck, B., Andrieu, L., Lara, M. De, 10.1007/s11238-011-9255-6, Theory Decision. 72 (2012), 2, 257-271. MR2878102DOI10.1007/s11238-011-9255-6
- Sharpe, W. F., 10.3905/jpm.1994.409501, J. Portfolio Management 21 (1994), 1, 49-58. DOI10.3905/jpm.1994.409501
- Ševčovič, D., Stehlíková, B., Mikula, K., Analytical and Numerical Methods for Pricing Financial Derivatives., Nova Science Publishers, Inc., Hauppauge 2011.
- Tourin, A., Zariphopoulou, T., 10.1007/bf01299457, Comput. Econ. 7 (1994), 4, 287-307. MR1318095DOI10.1007/bf01299457
- Vickson, R. G., 10.2307/2330272, J. Financial Quantitative Analysis 10 (1975), 799-811. DOI10.2307/2330272
- Wiesinger, A., Risk-Adjusted Performance Measurement State of the Art., Bachelor Thesis of the University of St. Gallen School of Business Administration, Economics, Law and Social Sciences (HSG), 2010.
- Xia, J., 10.1137/10080871x, J. Control Optim. 49 (2011), 5, 1916-1937. MR2837505DOI10.1137/10080871x
- Zariphopoulou, T., 10.1137/s0363012991218827, SIAM J. Control Optim. 32 (1994), 1, 59-85. MR1255960DOI10.1137/s0363012991218827
- Zheng, H., 10.1007/s00186-008-0234-9, Math. Meth. Oper. Res. 70 (2009), 1, 129-148. MR2529428DOI10.1007/s00186-008-0234-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.