Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces

Boban Karapetrović

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 2, page 559-576
  • ISSN: 0011-4642

Abstract

top
We show that if α > 1 , then the logarithmically weighted Bergman space A log α 2 is mapped by the Libera operator into the space A log α - 1 2 , while if α > 2 and 0 < ε α - 2 , then the Hilbert matrix operator H maps A log α 2 into A log α - 2 - ε 2 .We show that the Libera operator maps the logarithmically weighted Bloch space log α , α , into itself, while H maps log α into log α + 1 .In Pavlović’s paper (2016) it is shown that maps the logarithmically weighted Hardy-Bloch space log α 1 , α > 0 , into log α - 1 1 . We show that this result is sharp. We also show that H maps log α 1 , α 0 , into log α - 1 1 and that this result is sharp also.

How to cite

top

Karapetrović, Boban. "Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces." Czechoslovak Mathematical Journal 68.2 (2018): 559-576. <http://eudml.org/doc/294342>.

@article{Karapetrović2018,
abstract = {We show that if $\alpha >1$, then the logarithmically weighted Bergman space $A_\{\log ^\{\alpha \}\}^2$ is mapped by the Libera operator $\mathcal \{L\}$ into the space $A_\{\log ^\{\alpha -1\}\}^2$, while if $\alpha >2$ and $0<\varepsilon \le \alpha -2$, then the Hilbert matrix operator $H$ maps $A_\{\log ^\alpha \}^2$ into $A_\{\log ^\{\alpha -2-\varepsilon \}\}^2$.We show that the Libera operator $\mathcal \{L\}$ maps the logarithmically weighted Bloch space $\mathcal \{B\}_\{\log ^\{\alpha \}\}$, $\alpha \in \mathbb \{R\}$, into itself, while $H$ maps $\mathcal \{B\}_\{\log ^\{\alpha \}\}$ into $\mathcal \{B\}_\{\log ^\{\alpha +1\}\}$.In Pavlović’s paper (2016) it is shown that $\mathcal \{L\}$ maps the logarithmically weighted Hardy-Bloch space $\mathcal \{B\}_\{\log ^\{\alpha \}\}^1$, $\alpha >0$, into $\mathcal \{B\}_\{\log ^\{\alpha -1\}\}^1$. We show that this result is sharp. We also show that $H$ maps $\mathcal \{B\}_\{\log ^\{\alpha \}\}^1$, $\alpha \ge \{0\}$, into $\mathcal \{B\}_\{\log ^\{\alpha -1\}\}^1$ and that this result is sharp also.},
author = {Karapetrović, Boban},
journal = {Czechoslovak Mathematical Journal},
keywords = {Libera operator; Hilbert matrix operator; Hardy space; Bergman space; Bloch space; Hardy-Bloch space},
language = {eng},
number = {2},
pages = {559-576},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces},
url = {http://eudml.org/doc/294342},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Karapetrović, Boban
TI - Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 559
EP - 576
AB - We show that if $\alpha >1$, then the logarithmically weighted Bergman space $A_{\log ^{\alpha }}^2$ is mapped by the Libera operator $\mathcal {L}$ into the space $A_{\log ^{\alpha -1}}^2$, while if $\alpha >2$ and $0<\varepsilon \le \alpha -2$, then the Hilbert matrix operator $H$ maps $A_{\log ^\alpha }^2$ into $A_{\log ^{\alpha -2-\varepsilon }}^2$.We show that the Libera operator $\mathcal {L}$ maps the logarithmically weighted Bloch space $\mathcal {B}_{\log ^{\alpha }}$, $\alpha \in \mathbb {R}$, into itself, while $H$ maps $\mathcal {B}_{\log ^{\alpha }}$ into $\mathcal {B}_{\log ^{\alpha +1}}$.In Pavlović’s paper (2016) it is shown that $\mathcal {L}$ maps the logarithmically weighted Hardy-Bloch space $\mathcal {B}_{\log ^{\alpha }}^1$, $\alpha >0$, into $\mathcal {B}_{\log ^{\alpha -1}}^1$. We show that this result is sharp. We also show that $H$ maps $\mathcal {B}_{\log ^{\alpha }}^1$, $\alpha \ge {0}$, into $\mathcal {B}_{\log ^{\alpha -1}}^1$ and that this result is sharp also.
LA - eng
KW - Libera operator; Hilbert matrix operator; Hardy space; Bergman space; Bloch space; Hardy-Bloch space
UR - http://eudml.org/doc/294342
ER -

References

top
  1. Jevtić, M., Karapetrović, B., 10.5486/PMD.2017.7518, Publ. Math. 90 (2017), 359-371. (2017) MR3666637DOI10.5486/PMD.2017.7518
  2. Jevtić, M., Karapetrović, B., 10.2298/FIL1714641J, Filomat 31 (2017), 4641-4650. (2017) MR3730385DOI10.2298/FIL1714641J
  3. Jevtić, M., Vukotić, D., Arsenović, M., 10.1007/978-3-319-45644-7, RSME Springer Series 2, Springer, Cham (2016). (2016) Zbl1368.30001MR3587910DOI10.1007/978-3-319-45644-7
  4. Łanucha, B., Nowak, M., Pavlović, M., 10.5186/aasfm.2012.3715, Ann. Acad. Sci. Fenn., Math. 37 (2012), 161-174. (2012) Zbl1258.47047MR2920431DOI10.5186/aasfm.2012.3715
  5. Mateljević, M., Pavlović, M., 10.4064/sm-77-3-219-237, Stud. Math. 77 (1984), 219-237. (1984) Zbl1188.30004MR0745278DOI10.4064/sm-77-3-219-237
  6. Pavlović, M., 10.1155/2014/590656, The Scientific World Journal 2014 (2014), Article ID 590656, 15 pages. (2014) DOI10.1155/2014/590656
  7. Pavlović, M., 10.1515/9783110281903, De Gruyter Studies in Mathematics 52, De Gruyter, Berlin (2014). (2014) Zbl1296.30002MR3154590DOI10.1515/9783110281903
  8. Pavlović, M., 10.2298/PIM1614001P, Publ. Inst. Math. (Beograd) (N.S.) 100(114) (2016), 1-16. (2016) Zbl06749634MR3586678DOI10.2298/PIM1614001P
  9. Zhu, K., Operator Theory in Function Spaces, Monographs and Textbooks in Pure and Applied Mathematics 139, Marcel Dekker, New York (1990). (1990) Zbl0706.47019MR1074007
  10. Zygmund, A., Trigonometric Series. Vol. I, II, Cambridge University Press, Cambridge (1959). (1959) Zbl1084.42003MR1963498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.