Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 2, page 559-576
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKarapetrović, Boban. "Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces." Czechoslovak Mathematical Journal 68.2 (2018): 559-576. <http://eudml.org/doc/294342>.
@article{Karapetrović2018,
abstract = {We show that if $\alpha >1$, then the logarithmically weighted Bergman space $A_\{\log ^\{\alpha \}\}^2$ is mapped by the Libera operator $\mathcal \{L\}$ into the space $A_\{\log ^\{\alpha -1\}\}^2$, while if $\alpha >2$ and $0<\varepsilon \le \alpha -2$, then the Hilbert matrix operator $H$ maps $A_\{\log ^\alpha \}^2$ into $A_\{\log ^\{\alpha -2-\varepsilon \}\}^2$.We show that the Libera operator $\mathcal \{L\}$ maps the logarithmically weighted Bloch space $\mathcal \{B\}_\{\log ^\{\alpha \}\}$, $\alpha \in \mathbb \{R\}$, into itself, while $H$ maps $\mathcal \{B\}_\{\log ^\{\alpha \}\}$ into $\mathcal \{B\}_\{\log ^\{\alpha +1\}\}$.In Pavlović’s paper (2016) it is shown that $\mathcal \{L\}$ maps the logarithmically weighted Hardy-Bloch space $\mathcal \{B\}_\{\log ^\{\alpha \}\}^1$, $\alpha >0$, into $\mathcal \{B\}_\{\log ^\{\alpha -1\}\}^1$. We show that this result is sharp. We also show that $H$ maps $\mathcal \{B\}_\{\log ^\{\alpha \}\}^1$, $\alpha \ge \{0\}$, into $\mathcal \{B\}_\{\log ^\{\alpha -1\}\}^1$ and that this result is sharp also.},
author = {Karapetrović, Boban},
journal = {Czechoslovak Mathematical Journal},
keywords = {Libera operator; Hilbert matrix operator; Hardy space; Bergman space; Bloch space; Hardy-Bloch space},
language = {eng},
number = {2},
pages = {559-576},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces},
url = {http://eudml.org/doc/294342},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Karapetrović, Boban
TI - Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 559
EP - 576
AB - We show that if $\alpha >1$, then the logarithmically weighted Bergman space $A_{\log ^{\alpha }}^2$ is mapped by the Libera operator $\mathcal {L}$ into the space $A_{\log ^{\alpha -1}}^2$, while if $\alpha >2$ and $0<\varepsilon \le \alpha -2$, then the Hilbert matrix operator $H$ maps $A_{\log ^\alpha }^2$ into $A_{\log ^{\alpha -2-\varepsilon }}^2$.We show that the Libera operator $\mathcal {L}$ maps the logarithmically weighted Bloch space $\mathcal {B}_{\log ^{\alpha }}$, $\alpha \in \mathbb {R}$, into itself, while $H$ maps $\mathcal {B}_{\log ^{\alpha }}$ into $\mathcal {B}_{\log ^{\alpha +1}}$.In Pavlović’s paper (2016) it is shown that $\mathcal {L}$ maps the logarithmically weighted Hardy-Bloch space $\mathcal {B}_{\log ^{\alpha }}^1$, $\alpha >0$, into $\mathcal {B}_{\log ^{\alpha -1}}^1$. We show that this result is sharp. We also show that $H$ maps $\mathcal {B}_{\log ^{\alpha }}^1$, $\alpha \ge {0}$, into $\mathcal {B}_{\log ^{\alpha -1}}^1$ and that this result is sharp also.
LA - eng
KW - Libera operator; Hilbert matrix operator; Hardy space; Bergman space; Bloch space; Hardy-Bloch space
UR - http://eudml.org/doc/294342
ER -
References
top- Jevtić, M., Karapetrović, B., 10.5486/PMD.2017.7518, Publ. Math. 90 (2017), 359-371. (2017) MR3666637DOI10.5486/PMD.2017.7518
- Jevtić, M., Karapetrović, B., 10.2298/FIL1714641J, Filomat 31 (2017), 4641-4650. (2017) MR3730385DOI10.2298/FIL1714641J
- Jevtić, M., Vukotić, D., Arsenović, M., 10.1007/978-3-319-45644-7, RSME Springer Series 2, Springer, Cham (2016). (2016) Zbl1368.30001MR3587910DOI10.1007/978-3-319-45644-7
- Łanucha, B., Nowak, M., Pavlović, M., 10.5186/aasfm.2012.3715, Ann. Acad. Sci. Fenn., Math. 37 (2012), 161-174. (2012) Zbl1258.47047MR2920431DOI10.5186/aasfm.2012.3715
- Mateljević, M., Pavlović, M., 10.4064/sm-77-3-219-237, Stud. Math. 77 (1984), 219-237. (1984) Zbl1188.30004MR0745278DOI10.4064/sm-77-3-219-237
- Pavlović, M., 10.1155/2014/590656, The Scientific World Journal 2014 (2014), Article ID 590656, 15 pages. (2014) DOI10.1155/2014/590656
- Pavlović, M., 10.1515/9783110281903, De Gruyter Studies in Mathematics 52, De Gruyter, Berlin (2014). (2014) Zbl1296.30002MR3154590DOI10.1515/9783110281903
- Pavlović, M., 10.2298/PIM1614001P, Publ. Inst. Math. (Beograd) (N.S.) 100(114) (2016), 1-16. (2016) Zbl06749634MR3586678DOI10.2298/PIM1614001P
- Zhu, K., Operator Theory in Function Spaces, Monographs and Textbooks in Pure and Applied Mathematics 139, Marcel Dekker, New York (1990). (1990) Zbl0706.47019MR1074007
- Zygmund, A., Trigonometric Series. Vol. I, II, Cambridge University Press, Cambridge (1959). (1959) Zbl1084.42003MR1963498
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.