Coloring Cantor sets and resolvability of pseudocompact spaces
István Juhász; Lajos Soukup; Zoltán Szentmiklóssy
Commentationes Mathematicae Universitatis Carolinae (2018)
- Volume: 59, Issue: 4, page 523-529
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topJuhász, István, Soukup, Lajos, and Szentmiklóssy, Zoltán. "Coloring Cantor sets and resolvability of pseudocompact spaces." Commentationes Mathematicae Universitatis Carolinae 59.4 (2018): 523-529. <http://eudml.org/doc/294347>.
@article{Juhász2018,
abstract = {Let us denote by $\Phi (\lambda ,\mu )$ the statement that $\mathbb \{B\}(\lambda ) = D(\lambda )^\omega $, i.e. the Baire space of weight $\lambda $, has a coloring with $\mu $ colors such that every homeomorphic copy of the Cantor set $\mathbb \{C\}$ in $\mathbb \{B\}(\lambda )$ picks up all the $\mu $ colors. We call a space $X$$\pi $-regular if it is Hausdorff and for every nonempty open set $U$ in $X$ there is a nonempty open set $V$ such that $\overline\{V\} \subset U$. We recall that a space $X$ is called feebly compact if every locally finite collection of open sets in $X$ is finite. A Tychonov space is pseudocompact if and only if it is feebly compact. The main result of this paper is the following: Let $X$ be a crowded feebly compact $\pi $-regular space and $\mu $ be a fixed (finite or infinite) cardinal. If $\Phi (\lambda ,\mu )$ holds for all $\lambda < \hat\{c\}(X)$ then $X$ is $\mu $-resolvable, i.e. $X$ contains $\mu $ pairwise disjoint dense subsets. (Here $\hat\{c\}(X)$ is the smallest cardinal $\kappa $ such that $X$ does not contain $\kappa $ many pairwise disjoint open sets.) This significantly improves earlier results of [van Mill J., Every crowded pseudocompact ccc space is resolvable, Topology Appl. 213 (2016), 127–134], or [Ortiz-Castillo Y. F., Tomita A. H., Crowded pseudocompact Tychonoff spaces of cellularity at most the continuum are resolvable, Conf. talk at Toposym 2016].},
author = {Juhász, István, Soukup, Lajos, Szentmiklóssy, Zoltán},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {pseudocompact; feebly compact; resolvable; Baire space; coloring; Cantor set},
language = {eng},
number = {4},
pages = {523-529},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Coloring Cantor sets and resolvability of pseudocompact spaces},
url = {http://eudml.org/doc/294347},
volume = {59},
year = {2018},
}
TY - JOUR
AU - Juhász, István
AU - Soukup, Lajos
AU - Szentmiklóssy, Zoltán
TI - Coloring Cantor sets and resolvability of pseudocompact spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 4
SP - 523
EP - 529
AB - Let us denote by $\Phi (\lambda ,\mu )$ the statement that $\mathbb {B}(\lambda ) = D(\lambda )^\omega $, i.e. the Baire space of weight $\lambda $, has a coloring with $\mu $ colors such that every homeomorphic copy of the Cantor set $\mathbb {C}$ in $\mathbb {B}(\lambda )$ picks up all the $\mu $ colors. We call a space $X$$\pi $-regular if it is Hausdorff and for every nonempty open set $U$ in $X$ there is a nonempty open set $V$ such that $\overline{V} \subset U$. We recall that a space $X$ is called feebly compact if every locally finite collection of open sets in $X$ is finite. A Tychonov space is pseudocompact if and only if it is feebly compact. The main result of this paper is the following: Let $X$ be a crowded feebly compact $\pi $-regular space and $\mu $ be a fixed (finite or infinite) cardinal. If $\Phi (\lambda ,\mu )$ holds for all $\lambda < \hat{c}(X)$ then $X$ is $\mu $-resolvable, i.e. $X$ contains $\mu $ pairwise disjoint dense subsets. (Here $\hat{c}(X)$ is the smallest cardinal $\kappa $ such that $X$ does not contain $\kappa $ many pairwise disjoint open sets.) This significantly improves earlier results of [van Mill J., Every crowded pseudocompact ccc space is resolvable, Topology Appl. 213 (2016), 127–134], or [Ortiz-Castillo Y. F., Tomita A. H., Crowded pseudocompact Tychonoff spaces of cellularity at most the continuum are resolvable, Conf. talk at Toposym 2016].
LA - eng
KW - pseudocompact; feebly compact; resolvable; Baire space; coloring; Cantor set
UR - http://eudml.org/doc/294347
ER -
References
top- Hajnal A., Juhász I., Shelah S., 10.1090/S0002-9947-1986-0831204-9, Trans. Amer. Math. Soc. 295 (1986), no. 1, 369–387. MR0831204DOI10.1090/S0002-9947-1986-0831204-9
- Hewitt E., 10.1090/S0002-9947-1948-0026239-9, Trans. Amer. Math. Soc. 64 (1948), 45–99. MR0026239DOI10.1090/S0002-9947-1948-0026239-9
- Juhász I., Cardinal Functions in Topology---Ten Years Later, Mathematical Centre Tracts, 123, Mathematisch Centrum, Amsterdam, 1980. MR0576927
- Juhász I., Soukup L., Szentmiklóssy Z., 10.1016/j.topol.2006.04.004, Topology Appl. 154 (2007), no. 1, 144–154. MR2271779DOI10.1016/j.topol.2006.04.004
- Mardešić S., Papić P., Sur les espaces dont toute transformation réelle continue est bornée, Hrvatsko Prirod. Društvo. Glasnik Mat.-Fiz. Astr. Ser. II. 10 (1955), 225–232 (French. Serbo-Croatian summary). MR0080292
- van Mill J., 10.1016/j.topol.2016.08.020, Topology Appl. 213 (2016), 127–134. MR3563074DOI10.1016/j.topol.2016.08.020
- Ortiz-Castillo Y. F., Tomita A. H., Crowded pseudocompact Tychonoff spaces of cellularity at most the continuum are resolvable, Conf. talk at Toposym 2016 available at http://www.toposym.cz//slides-Ortiz_Castillo-2435.pdf.
- Pavlov O., Problems on (ir)resolvability, Open Problems in Topology. II. (Pearl E., ed.) Elsevier, Amsterdam, 2007, pages 51–59.
- Pytkeev E. G., Resolvability of countably compact regular spaces, Proc. Steklov Inst. Math. 2002, Algebra. Topology. Mathematical Analysis, suppl. 2, S152–S154. MR2068193
- Weiss W., Partitioning topological spaces, Topology, Vol. II, Proc. Fourth Colloq., Budapest, 1978, Colloq. Math. Soc. János Bolyai, 23, North-Holland, 1980, pages 1249–1255. MR0588871
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.