Solving second-order singularly perturbed ODE by the collocation method based on energetic Robin boundary functions
Applications of Mathematics (2019)
- Volume: 64, Issue: 6, page 679-693
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLiu, Chein-Shan, and Li, Botong. "Solving second-order singularly perturbed ODE by the collocation method based on energetic Robin boundary functions." Applications of Mathematics 64.6 (2019): 679-693. <http://eudml.org/doc/294348>.
@article{Liu2019,
abstract = {For a second-order singularly perturbed ordinary differential equation (ODE) under the Robin type boundary conditions, we develop an energetic Robin boundary functions method (ERBFM) to find the solution, which automatically satisfies the Robin boundary conditions. For the non-singular ODE the Robin boundary functions consist of polynomials, while the normalized exponential trial functions are used for the singularly perturbed ODE. The ERBFM is also designed to preserve the energy, which can quickly find accurate numerical solutions for the highly singularly perturbed problems by a simple collocation technique.},
author = {Liu, Chein-Shan, Li, Botong},
journal = {Applications of Mathematics},
keywords = {singularly perturbed ODE; Robin boundary function; energetic Robin boundary function; collocation method},
language = {eng},
number = {6},
pages = {679-693},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solving second-order singularly perturbed ODE by the collocation method based on energetic Robin boundary functions},
url = {http://eudml.org/doc/294348},
volume = {64},
year = {2019},
}
TY - JOUR
AU - Liu, Chein-Shan
AU - Li, Botong
TI - Solving second-order singularly perturbed ODE by the collocation method based on energetic Robin boundary functions
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 6
SP - 679
EP - 693
AB - For a second-order singularly perturbed ordinary differential equation (ODE) under the Robin type boundary conditions, we develop an energetic Robin boundary functions method (ERBFM) to find the solution, which automatically satisfies the Robin boundary conditions. For the non-singular ODE the Robin boundary functions consist of polynomials, while the normalized exponential trial functions are used for the singularly perturbed ODE. The ERBFM is also designed to preserve the energy, which can quickly find accurate numerical solutions for the highly singularly perturbed problems by a simple collocation technique.
LA - eng
KW - singularly perturbed ODE; Robin boundary function; energetic Robin boundary function; collocation method
UR - http://eudml.org/doc/294348
ER -
References
top- Ascher, U. M., Mattheij, R. M. M., Russell, R. D., 10.1137/1.9781611971231, Classics in Applied Mathematics 13, SIAM, Society for Industrial and Applied Mathematics, Philadelphia (1995). (1995) Zbl0843.65054MR1351005DOI10.1137/1.9781611971231
- Awoke, A., Reddy, Y. N., 10.1016/j.amc.2007.02.051, Appl. Math. Comput. 190 (2007), 1767-1782. (2007) Zbl1122.65377MR2339770DOI10.1016/j.amc.2007.02.051
- Bender, C. M., Orszag, S. A., Advanced Mathematical Methods for Scientists and Engineers, International Series in Pure and Applied Mathematics, McGraw-Hill Book, New York (1978). (1978) Zbl0417.34001MR0538168
- Cash, J. R., 10.1016/0898-1221(86)90009-X, Comput. Math. Appl., Part A 12 (1986), 1029-1048. (1986) Zbl0618.65071MR0862027DOI10.1016/0898-1221(86)90009-X
- Cash, J. R., 10.1137/0725049, SIAM J. Numer. Anal. 25 (1988), 862-882. (1988) Zbl0658.65070MR0954789DOI10.1137/0725049
- Cash, J. R., Wright, R. W., 10.1016/S0168-9274(98)00045-2, Appl. Numer. Math. 28 (1998), 227-244. (1998) Zbl0926.65078MR1655162DOI10.1016/S0168-9274(98)00045-2
- Doğan, N., Ertürk, V. S., Akı{n}, Ö., 10.1155/2012/579431, Discrete Dyn. Nat. Soc. 2012 (2012), Article ID 579431, 10 pages. (2012) Zbl1244.65119MR2914044DOI10.1155/2012/579431
- Ilicasu, F. O., Schultz, D. H., 10.1016/S0898-1221(04)90033-8, Comput. Math. Appl. 47 (2004), 391-417. (2004) Zbl1168.76343MR2048192DOI10.1016/S0898-1221(04)90033-8
- Kadalbajoo, M. K., Aggarwal, V. K., 10.1016/j.amc.2003.12.078, Appl. Math. Comput. 161 (2005), 973-987. (2005) Zbl1073.65062MR2113530DOI10.1016/j.amc.2003.12.078
- Keller, H. B., Numerical Methods for Two-Point Boundary Value Problems, Blaisdell Publishing Company, Waltham (1968). (1968) Zbl0172.19503MR0230476
- Khuri, S. A., Sayfy, A., 10.1002/mma.2664, Math. Methods Appl. Sci. 36 (2013), 1070-1079. (2013) Zbl1290.65064MR3066728DOI10.1002/mma.2664
- Lin, T.-C., Schultz, D. H., Zhang, W., 10.1016/j.camwa.2007.09.011, Comput. Math. Appl. 55 (2008), 2574-2592. (2008) Zbl1142.65306MR2416027DOI10.1016/j.camwa.2007.09.011
- Liu, C.-S., Efficient shooting methods for the second-order ordinary differential equations, CMES, Comput. Model. Eng. Sci. 15 (2006), 69-86. (2006) Zbl1152.65453MR2265974
- Liu, C.-S., The Lie-group shooting method for singularly perturbed two-point boundary value problems, CMES, Comput. Model. Eng. Sci. 15 (2006), 179-196. (2006) Zbl1152.65452MR2269392
- Liu, C.-S., 10.1016/j.enganabound.2012.03.001, Eng. Anal. Bound. Elem. 36 (2012), 1235-1245. (2012) Zbl1352.65637MR2913110DOI10.1016/j.enganabound.2012.03.001
- Liu, C.-S., 10.1016/j.cnsns.2011.09.029, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1506-1521. (2012) Zbl1244.65113MR2855443DOI10.1016/j.cnsns.2011.09.029
- Liu, C.-S., Li, B., 10.1016/j.aml.2017.04.023, Appl. Math. Lett. 73 (2017), 49-55. (2017) Zbl1375.65100MR3659907DOI10.1016/j.aml.2017.04.023
- Liu, C.-S., Liu, D., Jhao, W.-S., 10.1016/j.aml.2016.08.010, Appl. Math. Lett. 64 (2017), 51-58. (2017) Zbl1388.74062MR3564739DOI10.1016/j.aml.2016.08.010
- Patidar, K. C., 10.1016/j.amc.2006.10.040, Appl. Math. Comput. 188 (2007), 720-733. (2007) Zbl1119.65070MR2327398DOI10.1016/j.amc.2006.10.040
- Reddy, Y. N., Chakravarthy, P. Pramod, 10.1016/S0096-3003(03)00763-X, Appl. Math. Comput. 155 (2004), 95-110. (2004) Zbl1058.65079MR2078097DOI10.1016/S0096-3003(03)00763-X
- Varner, T. N., Choudhury, S. R., 10.1016/S0096-3003(97)10025-X, Appl. Math. Comput. 92 (1998), 101-123. (1998) Zbl0942.65081MR1625458DOI10.1016/S0096-3003(97)10025-X
- Vigo-Aguiar, J., Natesan, S., 10.1016/j.cam.2005.04.042, J. Comput. Appl. Math. 192 (2006), 132-141. (2006) Zbl1095.65068MR2226996DOI10.1016/j.cam.2005.04.042
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.