Solving second-order singularly perturbed ODE by the collocation method based on energetic Robin boundary functions

Chein-Shan Liu; Botong Li

Applications of Mathematics (2019)

  • Volume: 64, Issue: 6, page 679-693
  • ISSN: 0862-7940

Abstract

top
For a second-order singularly perturbed ordinary differential equation (ODE) under the Robin type boundary conditions, we develop an energetic Robin boundary functions method (ERBFM) to find the solution, which automatically satisfies the Robin boundary conditions. For the non-singular ODE the Robin boundary functions consist of polynomials, while the normalized exponential trial functions are used for the singularly perturbed ODE. The ERBFM is also designed to preserve the energy, which can quickly find accurate numerical solutions for the highly singularly perturbed problems by a simple collocation technique.

How to cite

top

Liu, Chein-Shan, and Li, Botong. "Solving second-order singularly perturbed ODE by the collocation method based on energetic Robin boundary functions." Applications of Mathematics 64.6 (2019): 679-693. <http://eudml.org/doc/294348>.

@article{Liu2019,
abstract = {For a second-order singularly perturbed ordinary differential equation (ODE) under the Robin type boundary conditions, we develop an energetic Robin boundary functions method (ERBFM) to find the solution, which automatically satisfies the Robin boundary conditions. For the non-singular ODE the Robin boundary functions consist of polynomials, while the normalized exponential trial functions are used for the singularly perturbed ODE. The ERBFM is also designed to preserve the energy, which can quickly find accurate numerical solutions for the highly singularly perturbed problems by a simple collocation technique.},
author = {Liu, Chein-Shan, Li, Botong},
journal = {Applications of Mathematics},
keywords = {singularly perturbed ODE; Robin boundary function; energetic Robin boundary function; collocation method},
language = {eng},
number = {6},
pages = {679-693},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solving second-order singularly perturbed ODE by the collocation method based on energetic Robin boundary functions},
url = {http://eudml.org/doc/294348},
volume = {64},
year = {2019},
}

TY - JOUR
AU - Liu, Chein-Shan
AU - Li, Botong
TI - Solving second-order singularly perturbed ODE by the collocation method based on energetic Robin boundary functions
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 6
SP - 679
EP - 693
AB - For a second-order singularly perturbed ordinary differential equation (ODE) under the Robin type boundary conditions, we develop an energetic Robin boundary functions method (ERBFM) to find the solution, which automatically satisfies the Robin boundary conditions. For the non-singular ODE the Robin boundary functions consist of polynomials, while the normalized exponential trial functions are used for the singularly perturbed ODE. The ERBFM is also designed to preserve the energy, which can quickly find accurate numerical solutions for the highly singularly perturbed problems by a simple collocation technique.
LA - eng
KW - singularly perturbed ODE; Robin boundary function; energetic Robin boundary function; collocation method
UR - http://eudml.org/doc/294348
ER -

References

top
  1. Ascher, U. M., Mattheij, R. M. M., Russell, R. D., 10.1137/1.9781611971231, Classics in Applied Mathematics 13, SIAM, Society for Industrial and Applied Mathematics, Philadelphia (1995). (1995) Zbl0843.65054MR1351005DOI10.1137/1.9781611971231
  2. Awoke, A., Reddy, Y. N., 10.1016/j.amc.2007.02.051, Appl. Math. Comput. 190 (2007), 1767-1782. (2007) Zbl1122.65377MR2339770DOI10.1016/j.amc.2007.02.051
  3. Bender, C. M., Orszag, S. A., Advanced Mathematical Methods for Scientists and Engineers, International Series in Pure and Applied Mathematics, McGraw-Hill Book, New York (1978). (1978) Zbl0417.34001MR0538168
  4. Cash, J. R., 10.1016/0898-1221(86)90009-X, Comput. Math. Appl., Part A 12 (1986), 1029-1048. (1986) Zbl0618.65071MR0862027DOI10.1016/0898-1221(86)90009-X
  5. Cash, J. R., 10.1137/0725049, SIAM J. Numer. Anal. 25 (1988), 862-882. (1988) Zbl0658.65070MR0954789DOI10.1137/0725049
  6. Cash, J. R., Wright, R. W., 10.1016/S0168-9274(98)00045-2, Appl. Numer. Math. 28 (1998), 227-244. (1998) Zbl0926.65078MR1655162DOI10.1016/S0168-9274(98)00045-2
  7. Doğan, N., Ertürk, V. S., Akı{n}, Ö., 10.1155/2012/579431, Discrete Dyn. Nat. Soc. 2012 (2012), Article ID 579431, 10 pages. (2012) Zbl1244.65119MR2914044DOI10.1155/2012/579431
  8. Ilicasu, F. O., Schultz, D. H., 10.1016/S0898-1221(04)90033-8, Comput. Math. Appl. 47 (2004), 391-417. (2004) Zbl1168.76343MR2048192DOI10.1016/S0898-1221(04)90033-8
  9. Kadalbajoo, M. K., Aggarwal, V. K., 10.1016/j.amc.2003.12.078, Appl. Math. Comput. 161 (2005), 973-987. (2005) Zbl1073.65062MR2113530DOI10.1016/j.amc.2003.12.078
  10. Keller, H. B., Numerical Methods for Two-Point Boundary Value Problems, Blaisdell Publishing Company, Waltham (1968). (1968) Zbl0172.19503MR0230476
  11. Khuri, S. A., Sayfy, A., 10.1002/mma.2664, Math. Methods Appl. Sci. 36 (2013), 1070-1079. (2013) Zbl1290.65064MR3066728DOI10.1002/mma.2664
  12. Lin, T.-C., Schultz, D. H., Zhang, W., 10.1016/j.camwa.2007.09.011, Comput. Math. Appl. 55 (2008), 2574-2592. (2008) Zbl1142.65306MR2416027DOI10.1016/j.camwa.2007.09.011
  13. Liu, C.-S., Efficient shooting methods for the second-order ordinary differential equations, CMES, Comput. Model. Eng. Sci. 15 (2006), 69-86. (2006) Zbl1152.65453MR2265974
  14. Liu, C.-S., The Lie-group shooting method for singularly perturbed two-point boundary value problems, CMES, Comput. Model. Eng. Sci. 15 (2006), 179-196. (2006) Zbl1152.65452MR2269392
  15. Liu, C.-S., 10.1016/j.enganabound.2012.03.001, Eng. Anal. Bound. Elem. 36 (2012), 1235-1245. (2012) Zbl1352.65637MR2913110DOI10.1016/j.enganabound.2012.03.001
  16. Liu, C.-S., 10.1016/j.cnsns.2011.09.029, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1506-1521. (2012) Zbl1244.65113MR2855443DOI10.1016/j.cnsns.2011.09.029
  17. Liu, C.-S., Li, B., 10.1016/j.aml.2017.04.023, Appl. Math. Lett. 73 (2017), 49-55. (2017) Zbl1375.65100MR3659907DOI10.1016/j.aml.2017.04.023
  18. Liu, C.-S., Liu, D., Jhao, W.-S., 10.1016/j.aml.2016.08.010, Appl. Math. Lett. 64 (2017), 51-58. (2017) Zbl1388.74062MR3564739DOI10.1016/j.aml.2016.08.010
  19. Patidar, K. C., 10.1016/j.amc.2006.10.040, Appl. Math. Comput. 188 (2007), 720-733. (2007) Zbl1119.65070MR2327398DOI10.1016/j.amc.2006.10.040
  20. Reddy, Y. N., Chakravarthy, P. Pramod, 10.1016/S0096-3003(03)00763-X, Appl. Math. Comput. 155 (2004), 95-110. (2004) Zbl1058.65079MR2078097DOI10.1016/S0096-3003(03)00763-X
  21. Varner, T. N., Choudhury, S. R., 10.1016/S0096-3003(97)10025-X, Appl. Math. Comput. 92 (1998), 101-123. (1998) Zbl0942.65081MR1625458DOI10.1016/S0096-3003(97)10025-X
  22. Vigo-Aguiar, J., Natesan, S., 10.1016/j.cam.2005.04.042, J. Comput. Appl. Math. 192 (2006), 132-141. (2006) Zbl1095.65068MR2226996DOI10.1016/j.cam.2005.04.042

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.