On commutative rings whose maximal ideals are idempotent
Commentationes Mathematicae Universitatis Carolinae (2019)
- Volume: 60, Issue: 3, page 313-322
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKourki, Farid, and Tribak, Rachid. "On commutative rings whose maximal ideals are idempotent." Commentationes Mathematicae Universitatis Carolinae 60.3 (2019): 313-322. <http://eudml.org/doc/294355>.
@article{Kourki2019,
abstract = {We prove that for a commutative ring $R$, every noetherian (artinian) $R$-module is quasi-injective if and only if every noetherian (artinian) $R$-module is quasi-projective if and only if the class of noetherian (artinian) $R$-modules is socle-fine if and only if the class of noetherian (artinian) $R$-modules is radical-fine if and only if every maximal ideal of $R$ is idempotent.},
author = {Kourki, Farid, Tribak, Rachid},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {artinian module; modules of finite length; noetherian module; quasi-injective module; quasi-projective module; radical-fine class of modules; socle-fine class of modules},
language = {eng},
number = {3},
pages = {313-322},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On commutative rings whose maximal ideals are idempotent},
url = {http://eudml.org/doc/294355},
volume = {60},
year = {2019},
}
TY - JOUR
AU - Kourki, Farid
AU - Tribak, Rachid
TI - On commutative rings whose maximal ideals are idempotent
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 3
SP - 313
EP - 322
AB - We prove that for a commutative ring $R$, every noetherian (artinian) $R$-module is quasi-injective if and only if every noetherian (artinian) $R$-module is quasi-projective if and only if the class of noetherian (artinian) $R$-modules is socle-fine if and only if the class of noetherian (artinian) $R$-modules is radical-fine if and only if every maximal ideal of $R$ is idempotent.
LA - eng
KW - artinian module; modules of finite length; noetherian module; quasi-injective module; quasi-projective module; radical-fine class of modules; socle-fine class of modules
UR - http://eudml.org/doc/294355
ER -
References
top- Amin I., Ibrahim Y., Yousif M., 10.1142/S1005386715000553, Algebra Colloq. 22 (2015), no. 4, 655–670. MR3403699DOI10.1142/S1005386715000553
- Anderson F. W., Fuller K. R., 10.1007/978-1-4612-4418-9_2, Graduate Texts in Mathematics, 13, Springer, New York, 1992. Zbl0765.16001MR1245487DOI10.1007/978-1-4612-4418-9_2
- Behboodi M., Karamzadeh O. A. S., Koohy H., Modules whose certain submodules are prime, Vietnam J. Math. 32 (2004), no. 3, 303–317. MR2101067
- Byrd K. A., 10.1090/S0002-9939-1972-0310009-7, Proc. Amer. Math. Soc. 33 (1972), 235–240. MR0310009DOI10.1090/S0002-9939-1972-0310009-7
- Cheatham T. J., Smith J. R., 10.2140/pjm.1976.65.315, Pacific J. Math. 65 (1976), no. 2, 315–323. MR0422348DOI10.2140/pjm.1976.65.315
- Dickson S. E., 10.1007/BF01110426, Math. Z. 104 (1968), 349–357. MR0229678DOI10.1007/BF01110426
- Ding N., Ibrahim Y., Yousif M., Zhou Y., 10.1080/00927872.2016.1222412, Comm. Algebra 45 (2017), no. 4, 1727–1740. MR3576690DOI10.1080/00927872.2016.1222412
- Ding N., Ibrahim Y., Yousif M., Zhou Y., 10.1142/S0219498817501663, J. Algebra Appl. 16 (2017), no. 9, 1750166, 25 pages. MR3661633DOI10.1142/S0219498817501663
- Gordon R., Robson J. C., Krull Dimension, Memoirs of the American Mathematical Society, 133, American Mathematical Society, Providence, 1973. MR0352177
- Hirano Y., 10.32917/hmj/1206134222, Hiroshima Math. J. 11 (1981), no. 1, 125–142. MR0606838DOI10.32917/hmj/1206134222
- Idelhadj A., Kaidi El A., A characterization of semi-artinian rings, Commutative ring theory, Lecture Notes in Pure and Appl. Math., 153, Dekker, New York, 1994, pages 171–179. MR1261888
- Idelhadj A., Kaidi El A., 10.1080/00927879508825534, Comm. Algebra 23 (1995), no. 14, 5329–5338 (French. English summary). MR1363605DOI10.1080/00927879508825534
- Idelhadj A., Kaidi El A., The dual of the socle-fine notion and applications, Commutative ring theory, Lecture Notes in Pure and Appl. Math., 185, Dekker, New York, 1997, pages 359–367. MR1422494
- Idelhadj A., Yahya A., Socle-fine characterization of Dedekind and regular rings, Algebra and Number Theory, Lecture Notes in Pure and Appl. Math., 208, Dekker, New York, 2000, pages 157–163. MR1724683
- Kaidi A., Baquero D. M., González C. M., Socle-fine characterization of Artinian and Notherian rings, The mathematical legacy of Hanno Rund, Hadronic Press, Palm Harbor, 1993, pages 191–197. MR1380787
- Kourki F., Tribak R., Some results on locally Noetherian modules and locally Artinian modules, Kyungpook Math. J. 58 (2018), no. 1, 1–8. MR3796012
- Mohamed S. H., Müller B. J., Continuous and Discrete Modules, London Mathematical Society Lecture Note Series, 147, Cambridge University Press, Cambridge, 1990. Zbl0701.16001MR1084376
- Penk T., Žemlička J., 10.1142/S0219498813501296, J. Algebra Appl. 13 (2014), no. 4, 1350129, 11 pages. MR3153864DOI10.1142/S0219498813501296
- Sarath B., 10.1215/ijm/1256049903, Illinois J. Math. 20 (1976), no. 2, 329–335. MR0399158DOI10.1215/ijm/1256049903
- Shock R. C., 10.2140/pjm.1974.54.227, Pacific J. Math. 54 (1974), no. 2, 227–235. MR0409549DOI10.2140/pjm.1974.54.227
- Storrer H. H., 10.1007/BFb0059571, Lectures on rings and modules, Lecture Notes in Math., 246, Springer, Berlin, 1972, pages 617–661. MR0360717DOI10.1007/BFb0059571
- Yousif M. F., 10.1017/S0004972700026782, Bull. Austral. Math. Soc. 37 (1988), no. 2, 237–240. MR0930794DOI10.1017/S0004972700026782
- Yousif M., Amin I., Ibrahim Y., 10.1080/00927872.2012.718823, Comm. Algebra 42 (2014), no. 2, 578–592. MR3169590DOI10.1080/00927872.2012.718823
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.