On commutative rings whose maximal ideals are idempotent

Farid Kourki; Rachid Tribak

Commentationes Mathematicae Universitatis Carolinae (2019)

  • Volume: 60, Issue: 3, page 313-322
  • ISSN: 0010-2628

Abstract

top
We prove that for a commutative ring R , every noetherian (artinian) R -module is quasi-injective if and only if every noetherian (artinian) R -module is quasi-projective if and only if the class of noetherian (artinian) R -modules is socle-fine if and only if the class of noetherian (artinian) R -modules is radical-fine if and only if every maximal ideal of R is idempotent.

How to cite

top

Kourki, Farid, and Tribak, Rachid. "On commutative rings whose maximal ideals are idempotent." Commentationes Mathematicae Universitatis Carolinae 60.3 (2019): 313-322. <http://eudml.org/doc/294355>.

@article{Kourki2019,
abstract = {We prove that for a commutative ring $R$, every noetherian (artinian) $R$-module is quasi-injective if and only if every noetherian (artinian) $R$-module is quasi-projective if and only if the class of noetherian (artinian) $R$-modules is socle-fine if and only if the class of noetherian (artinian) $R$-modules is radical-fine if and only if every maximal ideal of $R$ is idempotent.},
author = {Kourki, Farid, Tribak, Rachid},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {artinian module; modules of finite length; noetherian module; quasi-injective module; quasi-projective module; radical-fine class of modules; socle-fine class of modules},
language = {eng},
number = {3},
pages = {313-322},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On commutative rings whose maximal ideals are idempotent},
url = {http://eudml.org/doc/294355},
volume = {60},
year = {2019},
}

TY - JOUR
AU - Kourki, Farid
AU - Tribak, Rachid
TI - On commutative rings whose maximal ideals are idempotent
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 3
SP - 313
EP - 322
AB - We prove that for a commutative ring $R$, every noetherian (artinian) $R$-module is quasi-injective if and only if every noetherian (artinian) $R$-module is quasi-projective if and only if the class of noetherian (artinian) $R$-modules is socle-fine if and only if the class of noetherian (artinian) $R$-modules is radical-fine if and only if every maximal ideal of $R$ is idempotent.
LA - eng
KW - artinian module; modules of finite length; noetherian module; quasi-injective module; quasi-projective module; radical-fine class of modules; socle-fine class of modules
UR - http://eudml.org/doc/294355
ER -

References

top
  1. Amin I., Ibrahim Y., Yousif M., 10.1142/S1005386715000553, Algebra Colloq. 22 (2015), no. 4, 655–670. MR3403699DOI10.1142/S1005386715000553
  2. Anderson F. W., Fuller K. R., 10.1007/978-1-4612-4418-9_2, Graduate Texts in Mathematics, 13, Springer, New York, 1992. Zbl0765.16001MR1245487DOI10.1007/978-1-4612-4418-9_2
  3. Behboodi M., Karamzadeh O. A. S., Koohy H., Modules whose certain submodules are prime, Vietnam J. Math. 32 (2004), no. 3, 303–317. MR2101067
  4. Byrd K. A., 10.1090/S0002-9939-1972-0310009-7, Proc. Amer. Math. Soc. 33 (1972), 235–240. MR0310009DOI10.1090/S0002-9939-1972-0310009-7
  5. Cheatham T. J., Smith J. R., 10.2140/pjm.1976.65.315, Pacific J. Math. 65 (1976), no. 2, 315–323. MR0422348DOI10.2140/pjm.1976.65.315
  6. Dickson S. E., 10.1007/BF01110426, Math. Z. 104 (1968), 349–357. MR0229678DOI10.1007/BF01110426
  7. Ding N., Ibrahim Y., Yousif M., Zhou Y., 10.1080/00927872.2016.1222412, Comm. Algebra 45 (2017), no. 4, 1727–1740. MR3576690DOI10.1080/00927872.2016.1222412
  8. Ding N., Ibrahim Y., Yousif M., Zhou Y., 10.1142/S0219498817501663, J. Algebra Appl. 16 (2017), no. 9, 1750166, 25 pages. MR3661633DOI10.1142/S0219498817501663
  9. Gordon R., Robson J. C., Krull Dimension, Memoirs of the American Mathematical Society, 133, American Mathematical Society, Providence, 1973. MR0352177
  10. Hirano Y., 10.32917/hmj/1206134222, Hiroshima Math. J. 11 (1981), no. 1, 125–142. MR0606838DOI10.32917/hmj/1206134222
  11. Idelhadj A., Kaidi El A., A characterization of semi-artinian rings, Commutative ring theory, Lecture Notes in Pure and Appl. Math., 153, Dekker, New York, 1994, pages 171–179. MR1261888
  12. Idelhadj A., Kaidi El A., 10.1080/00927879508825534, Comm. Algebra 23 (1995), no. 14, 5329–5338 (French. English summary). MR1363605DOI10.1080/00927879508825534
  13. Idelhadj A., Kaidi El A., The dual of the socle-fine notion and applications, Commutative ring theory, Lecture Notes in Pure and Appl. Math., 185, Dekker, New York, 1997, pages 359–367. MR1422494
  14. Idelhadj A., Yahya A., Socle-fine characterization of Dedekind and regular rings, Algebra and Number Theory, Lecture Notes in Pure and Appl. Math., 208, Dekker, New York, 2000, pages 157–163. MR1724683
  15. Kaidi A., Baquero D. M., González C. M., Socle-fine characterization of Artinian and Notherian rings, The mathematical legacy of Hanno Rund, Hadronic Press, Palm Harbor, 1993, pages 191–197. MR1380787
  16. Kourki F., Tribak R., Some results on locally Noetherian modules and locally Artinian modules, Kyungpook Math. J. 58 (2018), no. 1, 1–8. MR3796012
  17. Mohamed S. H., Müller B. J., Continuous and Discrete Modules, London Mathematical Society Lecture Note Series, 147, Cambridge University Press, Cambridge, 1990. Zbl0701.16001MR1084376
  18. Penk T., Žemlička J., 10.1142/S0219498813501296, J. Algebra Appl. 13 (2014), no. 4, 1350129, 11 pages. MR3153864DOI10.1142/S0219498813501296
  19. Sarath B., 10.1215/ijm/1256049903, Illinois J. Math. 20 (1976), no. 2, 329–335. MR0399158DOI10.1215/ijm/1256049903
  20. Shock R. C., 10.2140/pjm.1974.54.227, Pacific J. Math. 54 (1974), no. 2, 227–235. MR0409549DOI10.2140/pjm.1974.54.227
  21. Storrer H. H., 10.1007/BFb0059571, Lectures on rings and modules, Lecture Notes in Math., 246, Springer, Berlin, 1972, pages 617–661. MR0360717DOI10.1007/BFb0059571
  22. Yousif M. F., 10.1017/S0004972700026782, Bull. Austral. Math. Soc. 37 (1988), no. 2, 237–240. MR0930794DOI10.1017/S0004972700026782
  23. Yousif M., Amin I., Ibrahim Y., 10.1080/00927872.2012.718823, Comm. Algebra 42 (2014), no. 2, 578–592. MR3169590DOI10.1080/00927872.2012.718823

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.