Littlewood-Paley characterization of Hölder-Zygmund spaces on stratified Lie groups

Guorong Hu

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 1, page 131-159
  • ISSN: 0011-4642

Abstract

top
We give a characterization of the Hölder-Zygmund spaces 𝒞 σ ( G ) ( 0 < σ < ) on a stratified Lie group G in terms of Littlewood-Paley type decompositions, in analogy to the well-known characterization of the Euclidean case. Such decompositions are defined via the spectral measure of a sub-Laplacian on G , in place of the Fourier transform in the classical setting. Our approach mainly relies on almost orthogonality estimates and can be used to study other function spaces such as Besov and Triebel-Lizorkin spaces on stratified Lie groups.

How to cite

top

Hu, Guorong. "Littlewood-Paley characterization of Hölder-Zygmund spaces on stratified Lie groups." Czechoslovak Mathematical Journal 69.1 (2019): 131-159. <http://eudml.org/doc/294365>.

@article{Hu2019,
abstract = {We give a characterization of the Hölder-Zygmund spaces $\mathcal \{C\}^\{\sigma \}(G)$ ($0< \sigma <\infty $) on a stratified Lie group $G$ in terms of Littlewood-Paley type decompositions, in analogy to the well-known characterization of the Euclidean case. Such decompositions are defined via the spectral measure of a sub-Laplacian on $G$, in place of the Fourier transform in the classical setting. Our approach mainly relies on almost orthogonality estimates and can be used to study other function spaces such as Besov and Triebel-Lizorkin spaces on stratified Lie groups.},
author = {Hu, Guorong},
journal = {Czechoslovak Mathematical Journal},
keywords = {stratified Lie group; Hölder-Zygmund space; Littlewood-Paley decomposition},
language = {eng},
number = {1},
pages = {131-159},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Littlewood-Paley characterization of Hölder-Zygmund spaces on stratified Lie groups},
url = {http://eudml.org/doc/294365},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Hu, Guorong
TI - Littlewood-Paley characterization of Hölder-Zygmund spaces on stratified Lie groups
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 131
EP - 159
AB - We give a characterization of the Hölder-Zygmund spaces $\mathcal {C}^{\sigma }(G)$ ($0< \sigma <\infty $) on a stratified Lie group $G$ in terms of Littlewood-Paley type decompositions, in analogy to the well-known characterization of the Euclidean case. Such decompositions are defined via the spectral measure of a sub-Laplacian on $G$, in place of the Fourier transform in the classical setting. Our approach mainly relies on almost orthogonality estimates and can be used to study other function spaces such as Besov and Triebel-Lizorkin spaces on stratified Lie groups.
LA - eng
KW - stratified Lie group; Hölder-Zygmund space; Littlewood-Paley decomposition
UR - http://eudml.org/doc/294365
ER -

References

top
  1. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F., 10.1007/978-3-540-71897-0, Springer Monographs in Mathematics, Springer, Berlin (2007). (2007) Zbl1128.43001MR2363343DOI10.1007/978-3-540-71897-0
  2. Christ, M., 10.2307/2001877, Trans. Am. Math. Soc. 328 (1991), 73-81. (1991) Zbl0739.42010MR1104196DOI10.2307/2001877
  3. Folland, G. B., 10.1007/BF02386204, Ark. Mat. 13 (1975), 161-207. (1975) Zbl0312.35026MR0494315DOI10.1007/BF02386204
  4. Folland, G. B., 10.4064/sm-66-1-37-55, Stud. Math. 66 (1979), 37-55. (1979) Zbl0439.43005MR0562450DOI10.4064/sm-66-1-37-55
  5. Folland, G. B., Stein, E. M., Hardy Spaces on Homogeneous Groups, Mathematical Notes 28, Princeton University Press, Princeton (1982). (1982) Zbl0508.42025MR0657581
  6. Führ, H., Mayeli, A., 10.1155/2012/523586, J. Funct. Spaces Appl. 2012 (2012), Article ID. 523586, 41 pages. (2012) Zbl1255.46016MR2923803DOI10.1155/2012/523586
  7. Furioli, G., Melzi, C., Veneruso, A., 10.1002/mana.200510409, Math. Nachr. 279 (2006), 1028-1040. (2006) Zbl1101.22006MR2242964DOI10.1002/mana.200510409
  8. Giulini, S., 10.2307/2046306, Proc. Am. Math. Soc. 96 (1986), 569-578. (1986) Zbl0605.41013MR0826483DOI10.2307/2046306
  9. Grafakos, L., 10.1007/978-0-387-09434-2, Graduate Texts in Mathematics 250, Springer, New York (2009). (2009) Zbl1158.42001MR2463316DOI10.1007/978-0-387-09434-2
  10. Hu, G., 10.1017/S0004972714001105, Bull. Aust. Math. Soc. 91 (2015), 286-302. (2015) Zbl1316.42024MR3314148DOI10.1017/S0004972714001105
  11. Hulanicki, A., 10.4064/sm-78-3-253-266, Stud. Math. 78 (1984), 253-266. (1984) Zbl0595.43007MR0782662DOI10.4064/sm-78-3-253-266
  12. Kerkyacharian, G., Petrushev, P., 10.1090/S0002-9947-2014-05993-X, Trans. Am. Math. Soc. 367 (2015), 121-189. (2015) Zbl1321.58017MR3271256DOI10.1090/S0002-9947-2014-05993-X
  13. Rudin, W., Functional Analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, New York (1991). (1991) Zbl0867.46001MR1157815
  14. Saka, K., 10.2748/tmj/1178229728, Tohoku Math. J., II. Ser. 31 (1979), 383-437. (1979) Zbl0429.43004MR0558675DOI10.2748/tmj/1178229728
  15. Triebel, H., 10.1007/978-3-0346-0416-1, Monographs in Mathematics 78, Birkhäuser, Basel (1983). (1983) Zbl0546.46027MR0781540DOI10.1007/978-3-0346-0416-1
  16. Varopoulos, N., Saloff-Coste, L., Coulhon, T., 10.1017/CBO9780511662485, Cambridge Tracts in Mathematics 100, Cambridge University Press, Cambridge (1992). (1992) Zbl1179.22009MR1218884DOI10.1017/CBO9780511662485

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.