Hilbert series of the Grassmannian and k -Narayana numbers

Lukas Braun

Communications in Mathematics (2019)

  • Volume: 27, Issue: 1, page 27-41
  • ISSN: 1804-1388

Abstract

top
We compute the Hilbert series of the complex Grassmannian using invariant theoretic methods. This is made possible by showing that the denominator of the q -Hilbert series is a Vandermonde-like determinant. We show that the h -polynomial of the Grassmannian coincides with the k -Narayana polynomial. A simplified formula for the h -polynomial of Schubert varieties is given. Finally, we use a generalized hypergeometric Euler transform to find simplified formulae for the k -Narayana numbers, i.e. the h -polynomial of the Grassmannian.

How to cite

top

Braun, Lukas. "Hilbert series of the Grassmannian and $k$-Narayana numbers." Communications in Mathematics 27.1 (2019): 27-41. <http://eudml.org/doc/294371>.

@article{Braun2019,
abstract = {We compute the Hilbert series of the complex Grassmannian using invariant theoretic methods. This is made possible by showing that the denominator of the $q$-Hilbert series is a Vandermonde-like determinant. We show that the $h$-polynomial of the Grassmannian coincides with the $k$-Narayana polynomial. A simplified formula for the $h$-polynomial of Schubert varieties is given. Finally, we use a generalized hypergeometric Euler transform to find simplified formulae for the $k$-Narayana numbers, i.e. the $h$-polynomial of the Grassmannian.},
author = {Braun, Lukas},
journal = {Communications in Mathematics},
keywords = {Hilbert series of the Grassmannian; Narayana numbers; Euler's hypergeometric transform},
language = {eng},
number = {1},
pages = {27-41},
publisher = {University of Ostrava},
title = {Hilbert series of the Grassmannian and $k$-Narayana numbers},
url = {http://eudml.org/doc/294371},
volume = {27},
year = {2019},
}

TY - JOUR
AU - Braun, Lukas
TI - Hilbert series of the Grassmannian and $k$-Narayana numbers
JO - Communications in Mathematics
PY - 2019
PB - University of Ostrava
VL - 27
IS - 1
SP - 27
EP - 41
AB - We compute the Hilbert series of the complex Grassmannian using invariant theoretic methods. This is made possible by showing that the denominator of the $q$-Hilbert series is a Vandermonde-like determinant. We show that the $h$-polynomial of the Grassmannian coincides with the $k$-Narayana polynomial. A simplified formula for the $h$-polynomial of Schubert varieties is given. Finally, we use a generalized hypergeometric Euler transform to find simplified formulae for the $k$-Narayana numbers, i.e. the $h$-polynomial of the Grassmannian.
LA - eng
KW - Hilbert series of the Grassmannian; Narayana numbers; Euler's hypergeometric transform
UR - http://eudml.org/doc/294371
ER -

References

top
  1. Berman, J., Köhler, P., Cardinalities of finite distributive lattices, Mitt. Math. Sem. Giessen, 121, 1976, 103-124, (1976) MR0485609
  2. Chipalkatti, J.V., Notes on Grassmannians and Schubert varieties, Queen's Papers in Pure and Applied Mathematics, 13, 119, 2000, (2000) 
  3. Derksen, H., Kemper, G., Computational invariant theory, 2015, Springer, (2015) MR3445218
  4. Ghorpade, S.R., Note on Hodge's postulation formula for Schubert varieties, Lecture Notes in Pure and Applied Mathematics, 217, 2001, 211-220, Marcel Dekker, New York, (2001) MR1824230
  5. Gross, B.H., Wallach, N.R., On the Hilbert polynomials and Hilbert series of homogeneous projective varieties, Arithmetic geometry and automorphic forms, 19, 2011, 253-263, (2011) MR2906911
  6. Hodge, W.V.D., 10.1017/S0305004100021824, Mathematical Proceedings of the Cambridge Philosophical Society, 38, 2, 1942, 129-143, Cambridge University Press, (1942) MR0006450DOI10.1017/S0305004100021824
  7. Hodge, W.V.D, 10.1017/S0305004100017631, Mathematical Proceedings of the Cambridge Philosophical Society, 39, 1, 1943, 22-30, Cambridge University Press, (1943) MR0007739DOI10.1017/S0305004100017631
  8. Hodge, W.V.D., Pedoe, D., Methods of algebraic geometry, Volume 2, 1952, Cambridge University Press, (1952) MR0061846
  9. Lakshmibai, V., Brown, J., The Grassmannian Variety: Geometric and Representation-theoretic Aspects, 42, 2015, Springer, (2015) MR3408060
  10. Littlewood, D.E., 10.1017/S0305004100022088, Mathematical Proceedings of the Cambridge Philosophical Society, 38, 4, 1942, 394-396, Cambridge University Press, (1942) MR0009937DOI10.1017/S0305004100022088
  11. MacMahon, P.A., Combinatory analysis, 1916, Cambridge University Press, (1916) MR0141605
  12. Maier, R., 10.1090/S0002-9947-05-04045-6, Transactions of the American Mathematical Society, 358, 1, 2006, 39-57, (2006) MR2171222DOI10.1090/S0002-9947-05-04045-6
  13. Miller, A.R., Paris, R.B., Euler-type transformations for the generalized hypergeometric function r + 2 F r + 1 ( x ) , Zeitschrift für angewandte Mathematik und Physik, 62, 1, 2011, 31-45, (2011) MR2765774
  14. Miller, A.R., Paris, R.B., 10.1216/RMJ-2013-43-1-291, Rocky Mountain Journal of Mathematics, 43, 1, 2013, 291-327, (2013) MR3065467DOI10.1216/RMJ-2013-43-1-291
  15. Mukai, S., An introduction to invariants and moduli, 2003, Cambridge University Press, Cambridge Studies in Advanced Mathematics 81. (2003) MR2004218
  16. Nanduri, R., 10.1142/S021949881550036X, Journal of Algebra and Its Applications, 14, 3, 2015, 1550036, (2015) MR3275573DOI10.1142/S021949881550036X
  17. Narayana, T.V., A partial order and its applications to probability theory, Sankhya: The Indian Journal of Statistics, 1959, 91-98, (1959) MR0106498
  18. Santos, F., Stump, C., Welker, V., Noncrossing sets and a Gra2ßmann associahedron, Forum of Mathematics, Sigma, 5, 2017, 49p, Cambridge University Press, (2017) MR3610869
  19. Stanley, R.P., 10.1002/sapm1971503259, Studies in Applied Mathematics, 50, 3, 1971, 259-279, (1971) MR0325407DOI10.1002/sapm1971503259
  20. Sturmfels, B., Gröbner bases and convex polytopes, 1996, American Mathematical Society, University Lecture Series Vol. 8.. (1996) MR1363949
  21. Sulanke, R.A., 10.37236/1807, The Electronic Journal of Combinatorics, 11, 1, 2004, 54p, (2004) MR2097320DOI10.37236/1807
  22. Sulanke, R.A., 10.1016/j.tcs.2005.08.014, Theoretical computer science, 346, 2--3, 2005, 455-468, (2005) MR2187419DOI10.1016/j.tcs.2005.08.014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.