Variations of uniform completeness related to realcompactness

Miroslav Hušek

Commentationes Mathematicae Universitatis Carolinae (2017)

  • Volume: 58, Issue: 4, page 501-518
  • ISSN: 0010-2628

Abstract

top
Various characterizations of realcompactness are transferred to uniform spaces giving non-equivalent concepts. Their properties, relations and characterizations are described in this paper. A Shirota-like characterization of certain uniform realcompactness proved by Garrido and Meroño for metrizable spaces is generalized to uniform spaces. The paper may be considered as a unifying survey of known results with some new results added.

How to cite

top

Hušek, Miroslav. "Variations of uniform completeness related to realcompactness." Commentationes Mathematicae Universitatis Carolinae 58.4 (2017): 501-518. <http://eudml.org/doc/294374>.

@article{Hušek2017,
abstract = {Various characterizations of realcompactness are transferred to uniform spaces giving non-equivalent concepts. Their properties, relations and characterizations are described in this paper. A Shirota-like characterization of certain uniform realcompactness proved by Garrido and Meroño for metrizable spaces is generalized to uniform spaces. The paper may be considered as a unifying survey of known results with some new results added.},
author = {Hušek, Miroslav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {realcompactness; realcompleteness; uniform space},
language = {eng},
number = {4},
pages = {501-518},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Variations of uniform completeness related to realcompactness},
url = {http://eudml.org/doc/294374},
volume = {58},
year = {2017},
}

TY - JOUR
AU - Hušek, Miroslav
TI - Variations of uniform completeness related to realcompactness
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 4
SP - 501
EP - 518
AB - Various characterizations of realcompactness are transferred to uniform spaces giving non-equivalent concepts. Their properties, relations and characterizations are described in this paper. A Shirota-like characterization of certain uniform realcompactness proved by Garrido and Meroño for metrizable spaces is generalized to uniform spaces. The paper may be considered as a unifying survey of known results with some new results added.
LA - eng
KW - realcompactness; realcompleteness; uniform space
UR - http://eudml.org/doc/294374
ER -

References

top
  1. Chekeev A.A., 10.1016/j.topol.2015.12.033, Topology Appl. 201 (2016), 145–156. Zbl1342.54021MR3461161DOI10.1016/j.topol.2015.12.033
  2. Chekeev A.A., Kasymova T.J., Ultrafilter-completeness on zero-sets of uniformly continuous functions, submitted to Proceedings Prague Toposym, 2016. 
  3. Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  4. Frolík Z., A generalization of realcompact spaces, Czechoslovak Math. J. 13 (1963), 127–137. Zbl0112.37603MR0155289
  5. Garrido M.I., Meroño A.S., 10.5186/aasfm.2014.3934, Ann. Acad. Sci. Fenn. Math. 39 (2014), 733–758. Zbl1303.54010MR3237048DOI10.5186/aasfm.2014.3934
  6. Garrido M.I., Meroño A.S., The Samuel realcompactification, Abstracts of Prague Toposym, 2016. 
  7. Garrido M.I., Meroño A.S., The Samuel realcompactification, submitted to Proceedings Prague Toposym, 2016. MR3688464
  8. Gillman L., Real-compact spaces (Q-spaces), Bull. Amer. Math. Soc. 63 (1957), 144–145. 
  9. Gillman L., Jerison M., Rings of Continuous Functions, Van Nostrand Co., Princeton, NJ-Toronto-London-New York, 1960. Zbl0327.46040MR0116199
  10. Hejcman J., Boundedness in uniform spaces and topological groups, Czechoslovak Math. J. 9 (1959), 544–563. Zbl0132.18202MR0141075
  11. Hejcman J., On conservative uniform spaces, Comment. Math. Univ. Carolin. 7 (1966), 411–417. Zbl0181.50902MR0202107
  12. Herrlich H., 10.1007/BF01111452, Math. Z. 96 (1967), 64–72. MR0208560DOI10.1007/BF01111452
  13. Hewitt E., 10.1090/S0002-9947-1948-0026239-9, Trans. Amer. Math. Soc. 64 (1948), 45–99. Zbl0032.28603MR0026239DOI10.1090/S0002-9947-1948-0026239-9
  14. Hušek M., 10.1007/BF01124977, Math. Z. 110 (1969), 123–126. Zbl0175.49601MR0244947DOI10.1007/BF01124977
  15. Hušek M., Pulgarín A., 10.2989/16073606.2012.742238, Quaest. Math. 35 (2012), 417–430. Zbl1274.54059MR2999998DOI10.2989/16073606.2012.742238
  16. Hušek M., Pulgarín A., When lattices of uniformly continuous functions on X determine X , Topology Appl. 194 (2015), 228–240. Zbl1328.54013MR3404615
  17. Isbell J.R., 10.2140/pjm.1958.8.67, Pacific J. Math. 8 (1958), 67–86. Zbl0081.16802MR0097794DOI10.2140/pjm.1958.8.67
  18. Isbell J.R., 10.2307/1970045, Ann. of Math. 68 (1958), 96–125. Zbl0081.11101MR0103407DOI10.2307/1970045
  19. Isbell J.R., Uniform Spaces, Math. Surveys, 12, American Mathematical Society, Rhode Island, 1964. Zbl0124.15601MR0170323
  20. Katětov M., 10.4064/fm-38-1-85-91, Fund. Math. 38 (1951), 85–91. MR0050264DOI10.4064/fm-38-1-85-91
  21. Mrówka S., Some properties of Q-spaces, Bull. Acad. Polon. Sci. Ser. Math. 5 (1957), 947–950. Zbl0079.38602MR0095465
  22. Mrówka S., 10.1307/mmj/1028999035, Michigan Math. J. 11 (1964), 61–63. Zbl0117.16002MR0161308DOI10.1307/mmj/1028999035
  23. Nachbin L., 10.1073/pnas.40.6.471, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 471–474. Zbl0055.09803MR0063647DOI10.1073/pnas.40.6.471
  24. Njastad O., 10.1007/BF01375524, Math. Ann. 154 (1964), 413–419. Zbl0121.39401MR0166757DOI10.1007/BF01375524
  25. Pelant J., Reflections not preserving completeness, Seminar Uniform Spaces (Prague 1973–1974), pp. 235–240. Zbl0327.54024MR0474219
  26. Rice M.D., Reynolds G.D., 10.1093/qmath/29.3.367, Quart. J. Math. Oxford 29 (1978), 367–374. Zbl0411.54028MR0509702DOI10.1093/qmath/29.3.367
  27. Rice M.D., 10.1090/S0002-9947-1975-0358708-2, Trans. Amer. Math. Soc. 201 (1975), 305–314. Zbl0615.54019MR0358708DOI10.1090/S0002-9947-1975-0358708-2
  28. Shirota T., On spaces with a complete structure, Proc. Japan Acad. 27 (1951), 513–516. Zbl0045.25702MR0048781
  29. Shirota T., A class of topological spaces, Osaka Math. J. 4 (1952), 23–40. Zbl0047.41704MR0050872
  30. Weir M.D., Hewitt-Nachbin Spaces, North Holland, Amsterdam, 1975. Zbl0314.54002MR0514909

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.