Maps on upper triangular matrices preserving zero products
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 4, page 1095-1103
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSłowik, Roksana. "Maps on upper triangular matrices preserving zero products." Czechoslovak Mathematical Journal 67.4 (2017): 1095-1103. <http://eudml.org/doc/294386>.
@article{Słowik2017,
abstract = {Consider $\mathcal \{T\}_n(F)$—the ring of all $n\times n$ upper triangular matrices defined over some field $F$. A map $\phi $ is called a zero product preserver on $\{\mathcal \{T\}\}_n(F)$ in both directions if for all $x,y\in \{\mathcal \{T\}\}_n(F)$ the condition $xy=0$ is satisfied if and only if $\phi (x)\phi (y)=0$. In the present paper such maps are investigated. The full description of bijective zero product preservers is given. Namely, on the set of the matrices that are invertible, the map $\phi $ may act in any bijective way, whereas for the zero divisors and zero matrix one can write $\phi $ as a composition of three types of maps. The first of them is a conjugacy, the second one is an automorphism induced by some field automorphism, and the third one transforms every matrix $x$ into a matrix $x^\{\prime \}$ such that $\lbrace y\in \mathcal \{T\}_n(F)\colon xy=0\rbrace =\lbrace y\in \mathcal \{T\}_n(F)\colon x^\{\prime \}y=0\rbrace $, $\lbrace y\in \mathcal \{T\}_n(F)\colon yx=0\rbrace =\lbrace y\in \mathcal \{T\}_n(F)\colon yx^\{\prime \}=0\rbrace $.},
author = {Słowik, Roksana},
journal = {Czechoslovak Mathematical Journal},
keywords = {zero product preserver; upper triangular matrix},
language = {eng},
number = {4},
pages = {1095-1103},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Maps on upper triangular matrices preserving zero products},
url = {http://eudml.org/doc/294386},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Słowik, Roksana
TI - Maps on upper triangular matrices preserving zero products
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 1095
EP - 1103
AB - Consider $\mathcal {T}_n(F)$—the ring of all $n\times n$ upper triangular matrices defined over some field $F$. A map $\phi $ is called a zero product preserver on ${\mathcal {T}}_n(F)$ in both directions if for all $x,y\in {\mathcal {T}}_n(F)$ the condition $xy=0$ is satisfied if and only if $\phi (x)\phi (y)=0$. In the present paper such maps are investigated. The full description of bijective zero product preservers is given. Namely, on the set of the matrices that are invertible, the map $\phi $ may act in any bijective way, whereas for the zero divisors and zero matrix one can write $\phi $ as a composition of three types of maps. The first of them is a conjugacy, the second one is an automorphism induced by some field automorphism, and the third one transforms every matrix $x$ into a matrix $x^{\prime }$ such that $\lbrace y\in \mathcal {T}_n(F)\colon xy=0\rbrace =\lbrace y\in \mathcal {T}_n(F)\colon x^{\prime }y=0\rbrace $, $\lbrace y\in \mathcal {T}_n(F)\colon yx=0\rbrace =\lbrace y\in \mathcal {T}_n(F)\colon yx^{\prime }=0\rbrace $.
LA - eng
KW - zero product preserver; upper triangular matrix
UR - http://eudml.org/doc/294386
ER -
References
top- Alaminos, J., Brešar, M., Extremera, J., Villena, A. R., 10.4064/sm193-2-3, Studia Math. 193 (2009), 131-159. (2009) Zbl1168.47029MR2515516DOI10.4064/sm193-2-3
- Beck, I., 10.1016/0021-8693(88)90202-5, J. Algebra 116 (1988), 208-226. (1988) Zbl0654.13001MR0944156DOI10.1016/0021-8693(88)90202-5
- Botta, P., Pierce, S., Watkins, W., 10.2140/pjm.1983.104.39, Pac. J. Math. 104 (1983), 39-46. (1983) Zbl0446.15002MR0683726DOI10.2140/pjm.1983.104.39
- Božić, I., Petrović, Z., 10.1080/00927870802465951, Commun. Algebra 37 (2009), 1186-1192. (2009) Zbl1185.16031MR2510978DOI10.1080/00927870802465951
- Burgos, M., Sánchez-Ortega, J., 10.1080/03081087.2012.678344, Linear Multilinear Algebra 61 (2013), 323-335. (2013) Zbl1281.15029MR3003427DOI10.1080/03081087.2012.678344
- Chebotar, M. A., Ke, W.-F., Lee, P.-H., 10.1016/j.jalgebra.2005.01.018, J. Algebra 289 (2005), 421-445. (2005) Zbl1094.16022MR2142380DOI10.1016/j.jalgebra.2005.01.018
- Chebotar, M. A., Ke, W.-F., Lee, P.-H., Wong, N.-C., 10.4064/sm155-1-6, Stud. Math. 155 (2003), 77-94. (2003) Zbl1032.46063MR1961162DOI10.4064/sm155-1-6
- Fenstermacher, T., Gegner, E., 10.35834/mjms/1418931956, Missouri J. Math. Sci. 26 (2014), 151-167. (2014) Zbl1308.05065MR3293812DOI10.35834/mjms/1418931956
- Hou, J., Zhao, L., 10.1016/j.laa.2004.12.002, Linear Algebra Appl. 399 (2005), 235-244. (2005) Zbl1068.47040MR2151936DOI10.1016/j.laa.2004.12.002
- Li, B., Zero-divisor graph of triangular matrix rings over commutative rings, Int. J. Algebra 5 (2011), 255-260. (2011) Zbl1228.16026MR2803507
- Li, A., Tucci, R. P., 10.1080/00927872.2012.706841, Comm. Algebra 41 (2013), 4622-4636. (2013) Zbl1291.16023MR3169542DOI10.1080/00927872.2012.706841
- Šemrl, P., 10.1017/S0004972700015811, Bull. Aust. Math. Soc. 48 (1993), 365-370. (1993) Zbl0795.15002MR1248039DOI10.1017/S0004972700015811
- Słowik, R., 10.1080/03081087.2013.801965, Linear Multilinear Algebra 62 (2014), 938-964. (2014) Zbl1305.15064MR3232670DOI10.1080/03081087.2013.801965
- Wang, L., 10.1016/j.laa.2014.09.035, Linear Algebra Appl. 465 (2015), 214-220. (2015) Zbl1312.16026MR3274672DOI10.1016/j.laa.2014.09.035
- Wong, W. J., 10.2140/pjm.1980.89.229, Pac. J. Math. 89 (1980), 229-247. (1980) Zbl0405.16006MR0596933DOI10.2140/pjm.1980.89.229
- Wong, D., Ma, X., Zhou, J., 10.1016/j.laa.2014.07.041, Linear Algebra Appl. 460 (2014), 242-258. (2014) Zbl1300.05187MR3250541DOI10.1016/j.laa.2014.07.041
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.