Maps on upper triangular matrices preserving zero products

Roksana Słowik

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 4, page 1095-1103
  • ISSN: 0011-4642

Abstract

top
Consider 𝒯 n ( F ) —the ring of all n × n upper triangular matrices defined over some field F . A map φ is called a zero product preserver on 𝒯 n ( F ) in both directions if for all x , y 𝒯 n ( F ) the condition x y = 0 is satisfied if and only if φ ( x ) φ ( y ) = 0 . In the present paper such maps are investigated. The full description of bijective zero product preservers is given. Namely, on the set of the matrices that are invertible, the map φ may act in any bijective way, whereas for the zero divisors and zero matrix one can write φ as a composition of three types of maps. The first of them is a conjugacy, the second one is an automorphism induced by some field automorphism, and the third one transforms every matrix x into a matrix x ' such that { y 𝒯 n ( F ) : x y = 0 } = { y 𝒯 n ( F ) : x ' y = 0 } , { y 𝒯 n ( F ) : y x = 0 } = { y 𝒯 n ( F ) : y x ' = 0 } .

How to cite

top

Słowik, Roksana. "Maps on upper triangular matrices preserving zero products." Czechoslovak Mathematical Journal 67.4 (2017): 1095-1103. <http://eudml.org/doc/294386>.

@article{Słowik2017,
abstract = {Consider $\mathcal \{T\}_n(F)$—the ring of all $n\times n$ upper triangular matrices defined over some field $F$. A map $\phi $ is called a zero product preserver on $\{\mathcal \{T\}\}_n(F)$ in both directions if for all $x,y\in \{\mathcal \{T\}\}_n(F)$ the condition $xy=0$ is satisfied if and only if $\phi (x)\phi (y)=0$. In the present paper such maps are investigated. The full description of bijective zero product preservers is given. Namely, on the set of the matrices that are invertible, the map $\phi $ may act in any bijective way, whereas for the zero divisors and zero matrix one can write $\phi $ as a composition of three types of maps. The first of them is a conjugacy, the second one is an automorphism induced by some field automorphism, and the third one transforms every matrix $x$ into a matrix $x^\{\prime \}$ such that $\lbrace y\in \mathcal \{T\}_n(F)\colon xy=0\rbrace =\lbrace y\in \mathcal \{T\}_n(F)\colon x^\{\prime \}y=0\rbrace $, $\lbrace y\in \mathcal \{T\}_n(F)\colon yx=0\rbrace =\lbrace y\in \mathcal \{T\}_n(F)\colon yx^\{\prime \}=0\rbrace $.},
author = {Słowik, Roksana},
journal = {Czechoslovak Mathematical Journal},
keywords = {zero product preserver; upper triangular matrix},
language = {eng},
number = {4},
pages = {1095-1103},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Maps on upper triangular matrices preserving zero products},
url = {http://eudml.org/doc/294386},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Słowik, Roksana
TI - Maps on upper triangular matrices preserving zero products
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 1095
EP - 1103
AB - Consider $\mathcal {T}_n(F)$—the ring of all $n\times n$ upper triangular matrices defined over some field $F$. A map $\phi $ is called a zero product preserver on ${\mathcal {T}}_n(F)$ in both directions if for all $x,y\in {\mathcal {T}}_n(F)$ the condition $xy=0$ is satisfied if and only if $\phi (x)\phi (y)=0$. In the present paper such maps are investigated. The full description of bijective zero product preservers is given. Namely, on the set of the matrices that are invertible, the map $\phi $ may act in any bijective way, whereas for the zero divisors and zero matrix one can write $\phi $ as a composition of three types of maps. The first of them is a conjugacy, the second one is an automorphism induced by some field automorphism, and the third one transforms every matrix $x$ into a matrix $x^{\prime }$ such that $\lbrace y\in \mathcal {T}_n(F)\colon xy=0\rbrace =\lbrace y\in \mathcal {T}_n(F)\colon x^{\prime }y=0\rbrace $, $\lbrace y\in \mathcal {T}_n(F)\colon yx=0\rbrace =\lbrace y\in \mathcal {T}_n(F)\colon yx^{\prime }=0\rbrace $.
LA - eng
KW - zero product preserver; upper triangular matrix
UR - http://eudml.org/doc/294386
ER -

References

top
  1. Alaminos, J., Brešar, M., Extremera, J., Villena, A. R., 10.4064/sm193-2-3, Studia Math. 193 (2009), 131-159. (2009) Zbl1168.47029MR2515516DOI10.4064/sm193-2-3
  2. Beck, I., 10.1016/0021-8693(88)90202-5, J. Algebra 116 (1988), 208-226. (1988) Zbl0654.13001MR0944156DOI10.1016/0021-8693(88)90202-5
  3. Botta, P., Pierce, S., Watkins, W., 10.2140/pjm.1983.104.39, Pac. J. Math. 104 (1983), 39-46. (1983) Zbl0446.15002MR0683726DOI10.2140/pjm.1983.104.39
  4. Božić, I., Petrović, Z., 10.1080/00927870802465951, Commun. Algebra 37 (2009), 1186-1192. (2009) Zbl1185.16031MR2510978DOI10.1080/00927870802465951
  5. Burgos, M., Sánchez-Ortega, J., 10.1080/03081087.2012.678344, Linear Multilinear Algebra 61 (2013), 323-335. (2013) Zbl1281.15029MR3003427DOI10.1080/03081087.2012.678344
  6. Chebotar, M. A., Ke, W.-F., Lee, P.-H., 10.1016/j.jalgebra.2005.01.018, J. Algebra 289 (2005), 421-445. (2005) Zbl1094.16022MR2142380DOI10.1016/j.jalgebra.2005.01.018
  7. Chebotar, M. A., Ke, W.-F., Lee, P.-H., Wong, N.-C., 10.4064/sm155-1-6, Stud. Math. 155 (2003), 77-94. (2003) Zbl1032.46063MR1961162DOI10.4064/sm155-1-6
  8. Fenstermacher, T., Gegner, E., 10.35834/mjms/1418931956, Missouri J. Math. Sci. 26 (2014), 151-167. (2014) Zbl1308.05065MR3293812DOI10.35834/mjms/1418931956
  9. Hou, J., Zhao, L., 10.1016/j.laa.2004.12.002, Linear Algebra Appl. 399 (2005), 235-244. (2005) Zbl1068.47040MR2151936DOI10.1016/j.laa.2004.12.002
  10. Li, B., Zero-divisor graph of triangular matrix rings over commutative rings, Int. J. Algebra 5 (2011), 255-260. (2011) Zbl1228.16026MR2803507
  11. Li, A., Tucci, R. P., 10.1080/00927872.2012.706841, Comm. Algebra 41 (2013), 4622-4636. (2013) Zbl1291.16023MR3169542DOI10.1080/00927872.2012.706841
  12. Šemrl, P., 10.1017/S0004972700015811, Bull. Aust. Math. Soc. 48 (1993), 365-370. (1993) Zbl0795.15002MR1248039DOI10.1017/S0004972700015811
  13. Słowik, R., 10.1080/03081087.2013.801965, Linear Multilinear Algebra 62 (2014), 938-964. (2014) Zbl1305.15064MR3232670DOI10.1080/03081087.2013.801965
  14. Wang, L., 10.1016/j.laa.2014.09.035, Linear Algebra Appl. 465 (2015), 214-220. (2015) Zbl1312.16026MR3274672DOI10.1016/j.laa.2014.09.035
  15. Wong, W. J., 10.2140/pjm.1980.89.229, Pac. J. Math. 89 (1980), 229-247. (1980) Zbl0405.16006MR0596933DOI10.2140/pjm.1980.89.229
  16. Wong, D., Ma, X., Zhou, J., 10.1016/j.laa.2014.07.041, Linear Algebra Appl. 460 (2014), 242-258. (2014) Zbl1300.05187MR3250541DOI10.1016/j.laa.2014.07.041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.