Congruence restrictions on axes

Jaromír Duda

Mathematica Bohemica (1992)

  • Volume: 117, Issue: 3, page 251-258
  • ISSN: 0862-7959

Abstract

top
We give Mal’cev conditions for varieties 4V4 whose congruences on the product A × B , A , B V , are determined by their restrictions on the axes in A × B .

How to cite

top

Duda, Jaromír. "Congruence restrictions on axes." Mathematica Bohemica 117.3 (1992): 251-258. <http://eudml.org/doc/29439>.

@article{Duda1992,
abstract = {We give Mal’cev conditions for varieties 4V4 whose congruences on the product $A\times B, A, B\in V$, are determined by their restrictions on the axes in $A\times B$.},
author = {Duda, Jaromír},
journal = {Mathematica Bohemica},
keywords = {Cartesian product; traces on axes; Mal’tsev conditions; congruence; axis in the product; variety of algebras; Cartesian product; traces on axes; Mal'tsev conditions},
language = {eng},
number = {3},
pages = {251-258},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Congruence restrictions on axes},
url = {http://eudml.org/doc/29439},
volume = {117},
year = {1992},
}

TY - JOUR
AU - Duda, Jaromír
TI - Congruence restrictions on axes
JO - Mathematica Bohemica
PY - 1992
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 117
IS - 3
SP - 251
EP - 258
AB - We give Mal’cev conditions for varieties 4V4 whose congruences on the product $A\times B, A, B\in V$, are determined by their restrictions on the axes in $A\times B$.
LA - eng
KW - Cartesian product; traces on axes; Mal’tsev conditions; congruence; axis in the product; variety of algebras; Cartesian product; traces on axes; Mal'tsev conditions
UR - http://eudml.org/doc/29439
ER -

References

top
  1. B. Csákány, Characterizations of regular varieties, Acta Sci. Math. (Szeged) 31 (1970), 187-189. (1970) MR0272697
  2. B. A. Davey K. R. Miles V. J. Schumann, Quasiidentities, Mal'cev conditions and congruence regularity, Acta Sci. Math. (Szeged) 51 (1987), 39-55. (1987) MR0911557
  3. J. Duda, On two schemes applied to Mal'cev type theorems, Ann. Univ. Sci. Budapest, Sectio Mathematica 26 (1983), 39-45. (1983) Zbl0518.08002MR0719774
  4. J. Duda, Mal'cev conditions for varieties of subregular algebras, Acta Sci. Math. (Szeged) 51 (1987), 329-334. (1987) Zbl0647.08002MR0940937
  5. J. Duda, Diagonal elements and compatible relations in the square of algebras, Czechoslovak Math. Journal (to appear). 
  6. K. Fichtner, Varieties of universal algebras with ideals, Mat. Sbornik 75 no. 117 (1968), 445-453. (In Russian.) (1968) Zbl0213.29602MR0222001
  7. G. A. Eraser A. Horn, 10.1090/S0002-9939-1970-0265258-1, Proc. Amer. Math. Soc. 26 (1970), 390-394. (1970) MR0265258DOI10.1090/S0002-9939-1970-0265258-1
  8. G. Grätzer, 10.1016/S0021-9800(70)80086-2, J. Comb. Theory 8 (1970), 334-342. (1970) Zbl0194.01401MR0279022DOI10.1016/S0021-9800(70)80086-2
  9. J. Hagemann, On regular and weakly regular congruences, Preprint Nr. 75, TH-Darmstadt, 1973. (1973) 
  10. J. Timm, On regular algebras, Colloq. Math. Soc. János Bolyai 17. Contributions to universal algebra, Szeged (1975), pp. 503-514. (1975) MR0491418
  11. R. Wille, Kongruenzklassengeometrien, Lecture Notes in Mathematics 113 (1970), Springer-Verlag, Berlin. (1970) Zbl0191.51403MR0262149

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.