A relational semantics for the logic of bounded lattices

Luciano J. González

Mathematica Bohemica (2019)

  • Volume: 144, Issue: 3, page 225-240
  • ISSN: 0862-7959

Abstract

top
This paper aims to propose a complete relational semantics for the so-called logic of bounded lattices, and prove a completeness theorem with regard to a class of two-sorted frames that is dually equivalent (categorically) to the variety of bounded lattices.

How to cite

top

González, Luciano J.. "A relational semantics for the logic of bounded lattices." Mathematica Bohemica 144.3 (2019): 225-240. <http://eudml.org/doc/294390>.

@article{González2019,
abstract = {This paper aims to propose a complete relational semantics for the so-called logic of bounded lattices, and prove a completeness theorem with regard to a class of two-sorted frames that is dually equivalent (categorically) to the variety of bounded lattices.},
author = {González, Luciano J.},
journal = {Mathematica Bohemica},
keywords = {logic of bounded lattice; polarity; two-sorted frame; relational semantics},
language = {eng},
number = {3},
pages = {225-240},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A relational semantics for the logic of bounded lattices},
url = {http://eudml.org/doc/294390},
volume = {144},
year = {2019},
}

TY - JOUR
AU - González, Luciano J.
TI - A relational semantics for the logic of bounded lattices
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 3
SP - 225
EP - 240
AB - This paper aims to propose a complete relational semantics for the so-called logic of bounded lattices, and prove a completeness theorem with regard to a class of two-sorted frames that is dually equivalent (categorically) to the variety of bounded lattices.
LA - eng
KW - logic of bounded lattice; polarity; two-sorted frame; relational semantics
UR - http://eudml.org/doc/294390
ER -

References

top
  1. Allwein, G., Dunn, J. M., 10.2307/2275217, J. Symb. Log. 58 (1993), 514-545. (1993) Zbl0795.03013MR1233922DOI10.2307/2275217
  2. Bimbó, K., Dunn, J. M., 10.1305/ndjfl/1063372199, Notre Dame J. Formal Logic 42 (2001), 171-192. (2001) Zbl1034.03021MR2010180DOI10.1305/ndjfl/1063372199
  3. Davey, B. A., Priestley, H. A., 10.1017/CBO9780511809088, Cambridge University Press, New York (2002). (2002) Zbl1002.06001MR1902334DOI10.1017/CBO9780511809088
  4. Dunn, J. M., Gehrke, M., Palmigiano, A., 10.2178/jsl/1122038911, J. Symb. Log. 70 (2005), 713-740. (2005) Zbl1101.03021MR2155263DOI10.2178/jsl/1122038911
  5. Font, J. M., Abstract Agebraic Logic. An Introductory Textbook, Studies in Logic 60. Mathematical Logic and Foundations. College Publications, London (2016). (2016) Zbl1375.03001MR3558731
  6. Font, J. M., Jansana, R., 10.1017/9781316716915, Lecture Notes in Logic 7. Springer, Berlin (1996). (1996) Zbl0865.03054MR1421569DOI10.1017/9781316716915
  7. Font, J. M., Jansana, R., Pigozzi, D., 10.1023/A:1024621922509, Stud. Log. 74 (2003), 13-97. (2003) Zbl1057.03058MR1996593DOI10.1023/A:1024621922509
  8. Gehrke, M., 10.1007/s11225-006-9008-7, Stud. Log. 84 (2006), 241-275. (2006) Zbl1115.03013MR2284541DOI10.1007/s11225-006-9008-7
  9. Gehrke, M., Jansana, R., Palmigiano, A., 10.1007/s11083-011-9226-0, Order 30 (2013), 39-64. (2013) Zbl1317.06002MR3018209DOI10.1007/s11083-011-9226-0
  10. Gehrke, M., Jónsson, B., Bounded distributive lattices with operators, Math. Jap. 40 (1994), 207-215. (1994) Zbl0855.06009MR1297234
  11. Gehrke, M., Jónsson, B., Monotone bounded distributive lattice expansions, Math. Jap. 52 (2000), 197-213. (2000) Zbl0972.06005MR1793267
  12. Gehrke, M., Jónsson, B., 10.7146/math.scand.a-14428, Math. Scand. 94 (2004), 13-45. (2004) Zbl1077.06008MR2032334DOI10.7146/math.scand.a-14428
  13. Hartung, G., 10.1007/BF01190610, Algebra Univers. 29 (1992), 273-299. (1992) Zbl0790.06005MR1157437DOI10.1007/BF01190610
  14. Johnstone, P. T., Stone Spaces, Cambridge Studies in Advanced Mathematics 3. Cambridge University Press, Cambridge (1982). (1982) Zbl0499.54001MR0698074
  15. Jónsson, B., Tarski, A., 10.2307/2372123, Am. J. Math. 73 (1951), 891-939. (1951) Zbl0045.31505MR0044502DOI10.2307/2372123
  16. Jónsson, B., Tarski, A., 10.2307/2372074, Am. J. Math. 74 (1952), 127-162. (1952) Zbl0045.31601MR0045086DOI10.2307/2372074
  17. Kamide, N., 10.1023/A:1019915908844, J. Logic Lang. Inf. 11 (2002), 453-470. (2002) Zbl1017.03011MR1926009DOI10.1023/A:1019915908844
  18. MacCaull, W., 10.2307/2586855, J. Symb. Log. 63 (1998), 623-637. (1998) Zbl0926.03024MR1625899DOI10.2307/2586855
  19. Moshier, M. A., Jipsen, P., 10.1007/s00012-014-0267-2, Algebra Univers. 71 (2014), 109-126. (2014) Zbl1307.06002MR3183386DOI10.1007/s00012-014-0267-2
  20. Moshier, M. A., Jipsen, P., 10.1007/s00012-014-0275-2, Algebra Univers. 71 (2014), 221-234. (2014) Zbl1307.06003MR3192022DOI10.1007/s00012-014-0275-2
  21. Rebagliato, J., Verdú, V., On the algebraization of some Gentzen systems, Ann. Soc. Math. Pol., Ser. IV, Fundam. Inf. 18 (1993), 319-338. (1993) Zbl0788.03006MR1270344
  22. Rebagliato, J., Verdú, V., Algebraizable Gentzen systems and the deduction theorem for Gentzen systems, Mathematics Preprint. Series 175 University of Barcelona (1995). (1995) 
  23. Urquhart, A., 10.1007/BF02485369, Algebra Univers. 8 (1978), 45-58. (1978) Zbl0382.06010MR0450150DOI10.1007/BF02485369

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.