A relational semantics for the logic of bounded lattices
Mathematica Bohemica (2019)
- Volume: 144, Issue: 3, page 225-240
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topGonzález, Luciano J.. "A relational semantics for the logic of bounded lattices." Mathematica Bohemica 144.3 (2019): 225-240. <http://eudml.org/doc/294390>.
@article{González2019,
abstract = {This paper aims to propose a complete relational semantics for the so-called logic of bounded lattices, and prove a completeness theorem with regard to a class of two-sorted frames that is dually equivalent (categorically) to the variety of bounded lattices.},
author = {González, Luciano J.},
journal = {Mathematica Bohemica},
keywords = {logic of bounded lattice; polarity; two-sorted frame; relational semantics},
language = {eng},
number = {3},
pages = {225-240},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A relational semantics for the logic of bounded lattices},
url = {http://eudml.org/doc/294390},
volume = {144},
year = {2019},
}
TY - JOUR
AU - González, Luciano J.
TI - A relational semantics for the logic of bounded lattices
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 3
SP - 225
EP - 240
AB - This paper aims to propose a complete relational semantics for the so-called logic of bounded lattices, and prove a completeness theorem with regard to a class of two-sorted frames that is dually equivalent (categorically) to the variety of bounded lattices.
LA - eng
KW - logic of bounded lattice; polarity; two-sorted frame; relational semantics
UR - http://eudml.org/doc/294390
ER -
References
top- Allwein, G., Dunn, J. M., 10.2307/2275217, J. Symb. Log. 58 (1993), 514-545. (1993) Zbl0795.03013MR1233922DOI10.2307/2275217
- Bimbó, K., Dunn, J. M., 10.1305/ndjfl/1063372199, Notre Dame J. Formal Logic 42 (2001), 171-192. (2001) Zbl1034.03021MR2010180DOI10.1305/ndjfl/1063372199
- Davey, B. A., Priestley, H. A., 10.1017/CBO9780511809088, Cambridge University Press, New York (2002). (2002) Zbl1002.06001MR1902334DOI10.1017/CBO9780511809088
- Dunn, J. M., Gehrke, M., Palmigiano, A., 10.2178/jsl/1122038911, J. Symb. Log. 70 (2005), 713-740. (2005) Zbl1101.03021MR2155263DOI10.2178/jsl/1122038911
- Font, J. M., Abstract Agebraic Logic. An Introductory Textbook, Studies in Logic 60. Mathematical Logic and Foundations. College Publications, London (2016). (2016) Zbl1375.03001MR3558731
- Font, J. M., Jansana, R., 10.1017/9781316716915, Lecture Notes in Logic 7. Springer, Berlin (1996). (1996) Zbl0865.03054MR1421569DOI10.1017/9781316716915
- Font, J. M., Jansana, R., Pigozzi, D., 10.1023/A:1024621922509, Stud. Log. 74 (2003), 13-97. (2003) Zbl1057.03058MR1996593DOI10.1023/A:1024621922509
- Gehrke, M., 10.1007/s11225-006-9008-7, Stud. Log. 84 (2006), 241-275. (2006) Zbl1115.03013MR2284541DOI10.1007/s11225-006-9008-7
- Gehrke, M., Jansana, R., Palmigiano, A., 10.1007/s11083-011-9226-0, Order 30 (2013), 39-64. (2013) Zbl1317.06002MR3018209DOI10.1007/s11083-011-9226-0
- Gehrke, M., Jónsson, B., Bounded distributive lattices with operators, Math. Jap. 40 (1994), 207-215. (1994) Zbl0855.06009MR1297234
- Gehrke, M., Jónsson, B., Monotone bounded distributive lattice expansions, Math. Jap. 52 (2000), 197-213. (2000) Zbl0972.06005MR1793267
- Gehrke, M., Jónsson, B., 10.7146/math.scand.a-14428, Math. Scand. 94 (2004), 13-45. (2004) Zbl1077.06008MR2032334DOI10.7146/math.scand.a-14428
- Hartung, G., 10.1007/BF01190610, Algebra Univers. 29 (1992), 273-299. (1992) Zbl0790.06005MR1157437DOI10.1007/BF01190610
- Johnstone, P. T., Stone Spaces, Cambridge Studies in Advanced Mathematics 3. Cambridge University Press, Cambridge (1982). (1982) Zbl0499.54001MR0698074
- Jónsson, B., Tarski, A., 10.2307/2372123, Am. J. Math. 73 (1951), 891-939. (1951) Zbl0045.31505MR0044502DOI10.2307/2372123
- Jónsson, B., Tarski, A., 10.2307/2372074, Am. J. Math. 74 (1952), 127-162. (1952) Zbl0045.31601MR0045086DOI10.2307/2372074
- Kamide, N., 10.1023/A:1019915908844, J. Logic Lang. Inf. 11 (2002), 453-470. (2002) Zbl1017.03011MR1926009DOI10.1023/A:1019915908844
- MacCaull, W., 10.2307/2586855, J. Symb. Log. 63 (1998), 623-637. (1998) Zbl0926.03024MR1625899DOI10.2307/2586855
- Moshier, M. A., Jipsen, P., 10.1007/s00012-014-0267-2, Algebra Univers. 71 (2014), 109-126. (2014) Zbl1307.06002MR3183386DOI10.1007/s00012-014-0267-2
- Moshier, M. A., Jipsen, P., 10.1007/s00012-014-0275-2, Algebra Univers. 71 (2014), 221-234. (2014) Zbl1307.06003MR3192022DOI10.1007/s00012-014-0275-2
- Rebagliato, J., Verdú, V., On the algebraization of some Gentzen systems, Ann. Soc. Math. Pol., Ser. IV, Fundam. Inf. 18 (1993), 319-338. (1993) Zbl0788.03006MR1270344
- Rebagliato, J., Verdú, V., Algebraizable Gentzen systems and the deduction theorem for Gentzen systems, Mathematics Preprint. Series 175 University of Barcelona (1995). (1995)
- Urquhart, A., 10.1007/BF02485369, Algebra Univers. 8 (1978), 45-58. (1978) Zbl0382.06010MR0450150DOI10.1007/BF02485369
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.