Zeros of a certain class of Gauss hypergeometric polynomials

Addisalem Abathun; Rikard Bøgvad

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 4, page 1021-1031
  • ISSN: 0011-4642

Abstract

top
We prove that as $n\to \infty $, the zeros of the polynomial $$ _{2}{F}_{1}\left [ \begin {matrix} -n, \alpha n+1\\ \alpha n+2 \end {matrix} ; z\right ] $$ cluster on (a part of) a level curve of an explicit harmonic function. This generalizes previous results of Boggs, Driver, Duren et al.\ (1999--2001) to the case of a complex parameter $\alpha $ and partially proves a conjecture made by the authors in an earlier work.

How to cite

top

Abathun, Addisalem, and Bøgvad, Rikard. "Zeros of a certain class of Gauss hypergeometric polynomials." Czechoslovak Mathematical Journal 68.4 (2018): 1021-1031. <http://eudml.org/doc/294392>.

@article{Abathun2018,
abstract = {We prove that as $n\to \infty $, the zeros of the polynomial $$ \_\{2\}\{F\}\_\{1\}\left [ \begin \{matrix\} -n, \alpha n+1\\ \alpha n+2 \end \{matrix\} ; z\right ] $$ cluster on (a part of) a level curve of an explicit harmonic function. This generalizes previous results of Boggs, Driver, Duren et al.\ (1999--2001) to the case of a complex parameter $\alpha $ and partially proves a conjecture made by the authors in an earlier work.},
author = {Abathun, Addisalem, Bøgvad, Rikard},
journal = {Czechoslovak Mathematical Journal},
language = {eng},
number = {4},
pages = {1021-1031},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Zeros of a certain class of Gauss hypergeometric polynomials},
url = {http://eudml.org/doc/294392},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Abathun, Addisalem
AU - Bøgvad, Rikard
TI - Zeros of a certain class of Gauss hypergeometric polynomials
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 4
SP - 1021
EP - 1031
AB - We prove that as $n\to \infty $, the zeros of the polynomial $$ _{2}{F}_{1}\left [ \begin {matrix} -n, \alpha n+1\\ \alpha n+2 \end {matrix} ; z\right ] $$ cluster on (a part of) a level curve of an explicit harmonic function. This generalizes previous results of Boggs, Driver, Duren et al.\ (1999--2001) to the case of a complex parameter $\alpha $ and partially proves a conjecture made by the authors in an earlier work.
LA - eng
UR - http://eudml.org/doc/294392
ER -

References

top
  1. Abathun, A., Bøgvad, R., 10.1007/s40315-015-0131-1, Comput. Methods Funct. Theory 16 (2016), 167-185. (2016) Zbl1339.33009MR3503349DOI10.1007/s40315-015-0131-1
  2. Andrews, G. E., Askey, R., Roy, R., 10.1017/CBO9781107325937, Encyclopedia of Mathematics and Its Applications 71, Cambridge University Press, Cambridge (1999). (1999) Zbl0920.33001MR1688958DOI10.1017/CBO9781107325937
  3. Bleistein, N., 10.1016/B978-0-08-091695-8.50001-7, Computer Science and Applied Mathematics, Academic Press, Orlando (1984). (1984) Zbl0554.35002MR0755514DOI10.1016/B978-0-08-091695-8.50001-7
  4. Boggs, K., Duren, P., 10.1007/BF03320990, Comput. Methods Funct. Theory 1 (2001), 275-287. (2001) Zbl1009.33004MR1931616DOI10.1007/BF03320990
  5. Borcea, J., Bøgvad, R., Shapiro, B., 10.2977/prims/1241553129, Publ. Res. Inst. Math. Sci. 45 (2009), 525-568 corrigendum ibid. 48 2012 229-233. (2009) Zbl1182.30008MR2510511DOI10.2977/prims/1241553129
  6. Bruijn, N. G. de, Asymptotic Methods in Analysis, Bibliotheca Mathematica 4, North-Holland Publishing, Amsterdam (1961). (1961) Zbl0109.03502MR0177247
  7. Driver, K., Duren, P., doi.org/10.1023/A:1019197027156, Numer. Algorithms 21 (1999), 147-156. (1999) Zbl0935.33004MR1725722DOIdoi.org/10.1023/A:1019197027156
  8. Duren, P. L., Guillou, B. J., 10.1006/jath.2001.3580, J. Approximation Theory 111 (2001), 329-343. (2001) Zbl0983.33008MR1849553DOI10.1006/jath.2001.3580

NotesEmbed ?

top

You must be logged in to post comments.