Zeros of a certain class of Gauss hypergeometric polynomials

Addisalem Abathun; Rikard Bøgvad

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 4, page 1021-1031
  • ISSN: 0011-4642

Abstract

top
We prove that as n , the zeros of the polynomial 2 F 1 - n , α n + 1 α n + 2 ; z cluster on (a part of) a level curve of an explicit harmonic function. This generalizes previous results of Boggs, Driver, Duren et al. (1999–2001) to the case of a complex parameter α and partially proves a conjecture made by the authors in an earlier work.

How to cite

top

Abathun, Addisalem, and Bøgvad, Rikard. "Zeros of a certain class of Gauss hypergeometric polynomials." Czechoslovak Mathematical Journal 68.4 (2018): 1021-1031. <http://eudml.org/doc/294392>.

@article{Abathun2018,
abstract = {We prove that as $n\rightarrow \infty $, the zeros of the polynomial \[ \_\{2\}\{F\}\_\{1\}\left[ \begin\{matrix\} -n, \alpha n+1\\ \alpha n+2 \end\{matrix\} ; z\right] \] cluster on (a part of) a level curve of an explicit harmonic function. This generalizes previous results of Boggs, Driver, Duren et al. (1999–2001) to the case of a complex parameter $\alpha $ and partially proves a conjecture made by the authors in an earlier work.},
author = {Abathun, Addisalem, Bøgvad, Rikard},
journal = {Czechoslovak Mathematical Journal},
keywords = {asymptotic zero-distribution; hypergeometric polynomial; saddle point method},
language = {eng},
number = {4},
pages = {1021-1031},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Zeros of a certain class of Gauss hypergeometric polynomials},
url = {http://eudml.org/doc/294392},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Abathun, Addisalem
AU - Bøgvad, Rikard
TI - Zeros of a certain class of Gauss hypergeometric polynomials
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 4
SP - 1021
EP - 1031
AB - We prove that as $n\rightarrow \infty $, the zeros of the polynomial \[ _{2}{F}_{1}\left[ \begin{matrix} -n, \alpha n+1\\ \alpha n+2 \end{matrix} ; z\right] \] cluster on (a part of) a level curve of an explicit harmonic function. This generalizes previous results of Boggs, Driver, Duren et al. (1999–2001) to the case of a complex parameter $\alpha $ and partially proves a conjecture made by the authors in an earlier work.
LA - eng
KW - asymptotic zero-distribution; hypergeometric polynomial; saddle point method
UR - http://eudml.org/doc/294392
ER -

References

top
  1. Abathun, A., Bøgvad, R., 10.1007/s40315-015-0131-1, Comput. Methods Funct. Theory 16 (2016), 167-185. (2016) Zbl1339.33009MR3503349DOI10.1007/s40315-015-0131-1
  2. Andrews, G. E., Askey, R., Roy, R., 10.1017/CBO9781107325937, Encyclopedia of Mathematics and Its Applications 71, Cambridge University Press, Cambridge (1999). (1999) Zbl0920.33001MR1688958DOI10.1017/CBO9781107325937
  3. Bleistein, N., 10.1016/B978-0-08-091695-8.50001-7, Computer Science and Applied Mathematics, Academic Press, Orlando (1984). (1984) Zbl0554.35002MR0755514DOI10.1016/B978-0-08-091695-8.50001-7
  4. Boggs, K., Duren, P., 10.1007/BF03320990, Comput. Methods Funct. Theory 1 (2001), 275-287. (2001) Zbl1009.33004MR1931616DOI10.1007/BF03320990
  5. Borcea, J., Bøgvad, R., Shapiro, B., 10.2977/prims/1241553129, Publ. Res. Inst. Math. Sci. 45 (2009), 525-568 corrigendum ibid. 48 2012 229-233. (2009) Zbl1182.30008MR2510511DOI10.2977/prims/1241553129
  6. Bruijn, N. G. de, Asymptotic Methods in Analysis, Bibliotheca Mathematica 4, North-Holland Publishing, Amsterdam (1961). (1961) Zbl0109.03502MR0177247
  7. Driver, K., Duren, P., doi.org/10.1023/A:1019197027156, Numer. Algorithms 21 (1999), 147-156. (1999) Zbl0935.33004MR1725722DOIdoi.org/10.1023/A:1019197027156
  8. Duren, P. L., Guillou, B. J., 10.1006/jath.2001.3580, J. Approximation Theory 111 (2001), 329-343. (2001) Zbl0983.33008MR1849553DOI10.1006/jath.2001.3580

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.