Zeros of a certain class of Gauss hypergeometric polynomials
Addisalem Abathun; Rikard Bøgvad
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 4, page 1021-1031
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAbathun, Addisalem, and Bøgvad, Rikard. "Zeros of a certain class of Gauss hypergeometric polynomials." Czechoslovak Mathematical Journal 68.4 (2018): 1021-1031. <http://eudml.org/doc/294392>.
@article{Abathun2018,
abstract = {We prove that as $n\rightarrow \infty $, the zeros of the polynomial \[ \_\{2\}\{F\}\_\{1\}\left[ \begin\{matrix\} -n, \alpha n+1\\ \alpha n+2 \end\{matrix\} ; z\right] \]
cluster on (a part of) a level curve of an explicit harmonic function. This generalizes previous results of Boggs, Driver, Duren et al. (1999–2001) to the case of a complex parameter $\alpha $ and partially proves a conjecture made by the authors in an earlier work.},
author = {Abathun, Addisalem, Bøgvad, Rikard},
journal = {Czechoslovak Mathematical Journal},
keywords = {asymptotic zero-distribution; hypergeometric polynomial; saddle point method},
language = {eng},
number = {4},
pages = {1021-1031},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Zeros of a certain class of Gauss hypergeometric polynomials},
url = {http://eudml.org/doc/294392},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Abathun, Addisalem
AU - Bøgvad, Rikard
TI - Zeros of a certain class of Gauss hypergeometric polynomials
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 4
SP - 1021
EP - 1031
AB - We prove that as $n\rightarrow \infty $, the zeros of the polynomial \[ _{2}{F}_{1}\left[ \begin{matrix} -n, \alpha n+1\\ \alpha n+2 \end{matrix} ; z\right] \]
cluster on (a part of) a level curve of an explicit harmonic function. This generalizes previous results of Boggs, Driver, Duren et al. (1999–2001) to the case of a complex parameter $\alpha $ and partially proves a conjecture made by the authors in an earlier work.
LA - eng
KW - asymptotic zero-distribution; hypergeometric polynomial; saddle point method
UR - http://eudml.org/doc/294392
ER -
References
top- Abathun, A., Bøgvad, R., 10.1007/s40315-015-0131-1, Comput. Methods Funct. Theory 16 (2016), 167-185. (2016) Zbl1339.33009MR3503349DOI10.1007/s40315-015-0131-1
- Andrews, G. E., Askey, R., Roy, R., 10.1017/CBO9781107325937, Encyclopedia of Mathematics and Its Applications 71, Cambridge University Press, Cambridge (1999). (1999) Zbl0920.33001MR1688958DOI10.1017/CBO9781107325937
- Bleistein, N., 10.1016/B978-0-08-091695-8.50001-7, Computer Science and Applied Mathematics, Academic Press, Orlando (1984). (1984) Zbl0554.35002MR0755514DOI10.1016/B978-0-08-091695-8.50001-7
- Boggs, K., Duren, P., 10.1007/BF03320990, Comput. Methods Funct. Theory 1 (2001), 275-287. (2001) Zbl1009.33004MR1931616DOI10.1007/BF03320990
- Borcea, J., Bøgvad, R., Shapiro, B., 10.2977/prims/1241553129, Publ. Res. Inst. Math. Sci. 45 (2009), 525-568 corrigendum ibid. 48 2012 229-233. (2009) Zbl1182.30008MR2510511DOI10.2977/prims/1241553129
- Bruijn, N. G. de, Asymptotic Methods in Analysis, Bibliotheca Mathematica 4, North-Holland Publishing, Amsterdam (1961). (1961) Zbl0109.03502MR0177247
- Driver, K., Duren, P., doi.org/10.1023/A:1019197027156, Numer. Algorithms 21 (1999), 147-156. (1999) Zbl0935.33004MR1725722DOIdoi.org/10.1023/A:1019197027156
- Duren, P. L., Guillou, B. J., 10.1006/jath.2001.3580, J. Approximation Theory 111 (2001), 329-343. (2001) Zbl0983.33008MR1849553DOI10.1006/jath.2001.3580
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.