Periodic solutions to Lagrangian system
Commentationes Mathematicae Universitatis Carolinae (2018)
- Volume: 59, Issue: 2, page 241-251
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topZubelevich, Oleg. "Periodic solutions to Lagrangian system." Commentationes Mathematicae Universitatis Carolinae 59.2 (2018): 241-251. <http://eudml.org/doc/294401>.
@article{Zubelevich2018,
abstract = {A classical mechanics Lagrangian system with even Lagrangian is considered. The configuration space is a cylinder $\mathbb \{R\}^m\times \mathbb \{T\}^n$. A large class of nonhomotopic periodic solutions has been found.},
author = {Zubelevich, Oleg},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Lagrangian system; periodic solution},
language = {eng},
number = {2},
pages = {241-251},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Periodic solutions to Lagrangian system},
url = {http://eudml.org/doc/294401},
volume = {59},
year = {2018},
}
TY - JOUR
AU - Zubelevich, Oleg
TI - Periodic solutions to Lagrangian system
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 2
SP - 241
EP - 251
AB - A classical mechanics Lagrangian system with even Lagrangian is considered. The configuration space is a cylinder $\mathbb {R}^m\times \mathbb {T}^n$. A large class of nonhomotopic periodic solutions has been found.
LA - eng
KW - Lagrangian system; periodic solution
UR - http://eudml.org/doc/294401
ER -
References
top- Adams R. A., Fournier J. J. F., Sobolev Spaces, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003. Zbl1098.46001MR2424078
- Capozzi A., Fortunato D., Salvatore A., 10.1016/0022-247X(87)90009-6, J. Math. Anal. Appl. 124 (1987), no. 2, 482–494. MR0887004DOI10.1016/0022-247X(87)90009-6
- Edwards R., Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York, 1965. MR0221256
- Ekeland I., Témam R., Convex Analysis and Variational Problems, Classics in Applied Mathematics, 28, Society for Industrial and Applied Mathematics, Philadelphia, 1999. MR1727362
- Mawhin J., Willem M., 10.1007/978-1-4757-2061-7, Applied Mathematical Sciences, 74, Springer, New York, 1989. MR0982267DOI10.1007/978-1-4757-2061-7
- Struwe M., Variational Methods, Applications to Nonlinear partial Differential Equations and Hamiltonian Systems, Results in Mathematics and Related Areas, 3rd Series, A Series of Modern Surveys in Mathematics, 34, Springer, Berlin, 2008. MR2431434
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.