Thompson’s conjecture for the alternating group of degree 2 p and 2 p + 1

Azam Babai; Ali Mahmoudifar

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 4, page 1049-1058
  • ISSN: 0011-4642

Abstract

top
For a finite group G denote by N ( G ) the set of conjugacy class sizes of G . In 1980s, J. G. Thompson posed the following conjecture: If L is a finite nonabelian simple group, G is a finite group with trivial center and N ( G ) = N ( L ) , then G L . We prove this conjecture for an infinite class of simple groups. Let p be an odd prime. We show that every finite group G with the property Z ( G ) = 1 and N ( G ) = N ( A i ) is necessarily isomorphic to A i , where i { 2 p , 2 p + 1 } .

How to cite

top

Babai, Azam, and Mahmoudifar, Ali. "Thompson’s conjecture for the alternating group of degree $2p$ and $2p+1$." Czechoslovak Mathematical Journal 67.4 (2017): 1049-1058. <http://eudml.org/doc/294402>.

@article{Babai2017,
abstract = {For a finite group $G$ denote by $N(G)$ the set of conjugacy class sizes of $G$. In 1980s, J. G. Thompson posed the following conjecture: If $L$ is a finite nonabelian simple group, $G$ is a finite group with trivial center and $N(G) = N(L)$, then $G\cong L$. We prove this conjecture for an infinite class of simple groups. Let $p$ be an odd prime. We show that every finite group $G$ with the property $Z(G)=1$ and $N(G) = N(A_\{i\})$ is necessarily isomorphic to $A_\{i\}$, where $i\in \lbrace 2p,2p+1\rbrace $.},
author = {Babai, Azam, Mahmoudifar, Ali},
journal = {Czechoslovak Mathematical Journal},
keywords = {finite group; conjugacy class size; simple group},
language = {eng},
number = {4},
pages = {1049-1058},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Thompson’s conjecture for the alternating group of degree $2p$ and $2p+1$},
url = {http://eudml.org/doc/294402},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Babai, Azam
AU - Mahmoudifar, Ali
TI - Thompson’s conjecture for the alternating group of degree $2p$ and $2p+1$
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 1049
EP - 1058
AB - For a finite group $G$ denote by $N(G)$ the set of conjugacy class sizes of $G$. In 1980s, J. G. Thompson posed the following conjecture: If $L$ is a finite nonabelian simple group, $G$ is a finite group with trivial center and $N(G) = N(L)$, then $G\cong L$. We prove this conjecture for an infinite class of simple groups. Let $p$ be an odd prime. We show that every finite group $G$ with the property $Z(G)=1$ and $N(G) = N(A_{i})$ is necessarily isomorphic to $A_{i}$, where $i\in \lbrace 2p,2p+1\rbrace $.
LA - eng
KW - finite group; conjugacy class size; simple group
UR - http://eudml.org/doc/294402
ER -

References

top
  1. Abdollahi, A., Shahverdi, H., 10.1016/j.jalgebra.2012.01.038, J. Algebra 357 (2012), 203-207. (2012) Zbl1255.20026MR2905249DOI10.1016/j.jalgebra.2012.01.038
  2. Ahanjideh, N., 10.1016/j.jalgebra.2011.05.043, J. Algebra 344 (2011), 205-228. (2011) Zbl1247.20015MR2831937DOI10.1016/j.jalgebra.2011.05.043
  3. Ahanjideh, N., 10.1142/S0218196712500774, Int. J. Algebra Comput. 23 (2013), 37-68. (2013) Zbl1281.20015MR3040801DOI10.1142/S0218196712500774
  4. Alavi, S. H., Daneshkhah, A., 10.1007/BF02936052, J. Appl. Math. Comput. 17 (2005), 245-258. (2005) Zbl1066.20012MR2108803DOI10.1007/BF02936052
  5. Chen, G., 10.1006/jabr.1996.0320, J. Algebra 185 (1996), 184-193. (1996) Zbl0861.20018MR1409982DOI10.1006/jabr.1996.0320
  6. Gorshkov, I. B., 10.1007/s10469-012-9175-8, Algebra Logic 51 (2012), 111-127 translated from Algebra Logika 51 2012 168-192 Russian. (2012) Zbl1270.20010MR2986578DOI10.1007/s10469-012-9175-8
  7. Gorshkov, I. B., 10.1134/S0081543816050060, Proc. Steklov Inst. Math. 293 (2016), S58--S65 translated from Tr. Inst. Mat. Mekh. (Ekaterinburg) 22 2016 44-51 Russian. (2016) Zbl1352.20022MR3497182DOI10.1134/S0081543816050060
  8. Gorshkov, I. B., 10.1515/jgth-2015-0043, J. Group Theory 19 (2016), 331-336. (2016) Zbl1341.20022MR3466599DOI10.1515/jgth-2015-0043
  9. Isaacs, I. M., 10.1090/gsm/092, Graduate Studies in Mathematics 92, American Mathematical Society, Providence (2008). (2008) Zbl1169.20001MR2426855DOI10.1090/gsm/092
  10. Mahmoudifar, A., Khosravi, B., 10.1134/S0037446615010127, Sib. Math. J. 56 (2015), 125-131 translated from Sib. Mat. Zh. 56 2015 149-157 Russian. (2015) Zbl1318.20027MR3407946DOI10.1134/S0037446615010127
  11. Mazurov, V. D., eds., E. I. Khukhro, The Kourovka Notebook. Unsolved Problems in Group Theory, Institute of Mathematics, Russian Academy of Sciences Siberian Division, Novosibirsk (2010). (2010) Zbl1211.20001MR3235009
  12. Vakula, I. A., 10.1134/S0081543811020192, Proc. Steklov Inst. Math. 272 (2011), 271-286 translated from Tr. Inst. Mat. Mekh. (Ekaterinburg) 16 2010 45-60 Russian. (2011) Zbl1233.20016MR3546195DOI10.1134/S0081543811020192
  13. Vasil'ev, A. V., On Thompson's conjecture, Sib. Elektron. Mat. Izv. 6 (2009), 457-464. (2009) Zbl1289.20057MR2586699
  14. Xu, M., 10.1007/s11464-013-0320-z, Front. Math. China 8 (2013), 1227-1236. (2013) Zbl1281.20018MR3091135DOI10.1007/s11464-013-0320-z

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.