Thompson’s conjecture for the alternating group of degree and
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 4, page 1049-1058
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBabai, Azam, and Mahmoudifar, Ali. "Thompson’s conjecture for the alternating group of degree $2p$ and $2p+1$." Czechoslovak Mathematical Journal 67.4 (2017): 1049-1058. <http://eudml.org/doc/294402>.
@article{Babai2017,
abstract = {For a finite group $G$ denote by $N(G)$ the set of conjugacy class sizes of $G$. In 1980s, J. G. Thompson posed the following conjecture: If $L$ is a finite nonabelian simple group, $G$ is a finite group with trivial center and $N(G) = N(L)$, then $G\cong L$. We prove this conjecture for an infinite class of simple groups. Let $p$ be an odd prime. We show that every finite group $G$ with the property $Z(G)=1$ and $N(G) = N(A_\{i\})$ is necessarily isomorphic to $A_\{i\}$, where $i\in \lbrace 2p,2p+1\rbrace $.},
author = {Babai, Azam, Mahmoudifar, Ali},
journal = {Czechoslovak Mathematical Journal},
keywords = {finite group; conjugacy class size; simple group},
language = {eng},
number = {4},
pages = {1049-1058},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Thompson’s conjecture for the alternating group of degree $2p$ and $2p+1$},
url = {http://eudml.org/doc/294402},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Babai, Azam
AU - Mahmoudifar, Ali
TI - Thompson’s conjecture for the alternating group of degree $2p$ and $2p+1$
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 1049
EP - 1058
AB - For a finite group $G$ denote by $N(G)$ the set of conjugacy class sizes of $G$. In 1980s, J. G. Thompson posed the following conjecture: If $L$ is a finite nonabelian simple group, $G$ is a finite group with trivial center and $N(G) = N(L)$, then $G\cong L$. We prove this conjecture for an infinite class of simple groups. Let $p$ be an odd prime. We show that every finite group $G$ with the property $Z(G)=1$ and $N(G) = N(A_{i})$ is necessarily isomorphic to $A_{i}$, where $i\in \lbrace 2p,2p+1\rbrace $.
LA - eng
KW - finite group; conjugacy class size; simple group
UR - http://eudml.org/doc/294402
ER -
References
top- Abdollahi, A., Shahverdi, H., 10.1016/j.jalgebra.2012.01.038, J. Algebra 357 (2012), 203-207. (2012) Zbl1255.20026MR2905249DOI10.1016/j.jalgebra.2012.01.038
- Ahanjideh, N., 10.1016/j.jalgebra.2011.05.043, J. Algebra 344 (2011), 205-228. (2011) Zbl1247.20015MR2831937DOI10.1016/j.jalgebra.2011.05.043
- Ahanjideh, N., 10.1142/S0218196712500774, Int. J. Algebra Comput. 23 (2013), 37-68. (2013) Zbl1281.20015MR3040801DOI10.1142/S0218196712500774
- Alavi, S. H., Daneshkhah, A., 10.1007/BF02936052, J. Appl. Math. Comput. 17 (2005), 245-258. (2005) Zbl1066.20012MR2108803DOI10.1007/BF02936052
- Chen, G., 10.1006/jabr.1996.0320, J. Algebra 185 (1996), 184-193. (1996) Zbl0861.20018MR1409982DOI10.1006/jabr.1996.0320
- Gorshkov, I. B., 10.1007/s10469-012-9175-8, Algebra Logic 51 (2012), 111-127 translated from Algebra Logika 51 2012 168-192 Russian. (2012) Zbl1270.20010MR2986578DOI10.1007/s10469-012-9175-8
- Gorshkov, I. B., 10.1134/S0081543816050060, Proc. Steklov Inst. Math. 293 (2016), S58--S65 translated from Tr. Inst. Mat. Mekh. (Ekaterinburg) 22 2016 44-51 Russian. (2016) Zbl1352.20022MR3497182DOI10.1134/S0081543816050060
- Gorshkov, I. B., 10.1515/jgth-2015-0043, J. Group Theory 19 (2016), 331-336. (2016) Zbl1341.20022MR3466599DOI10.1515/jgth-2015-0043
- Isaacs, I. M., 10.1090/gsm/092, Graduate Studies in Mathematics 92, American Mathematical Society, Providence (2008). (2008) Zbl1169.20001MR2426855DOI10.1090/gsm/092
- Mahmoudifar, A., Khosravi, B., 10.1134/S0037446615010127, Sib. Math. J. 56 (2015), 125-131 translated from Sib. Mat. Zh. 56 2015 149-157 Russian. (2015) Zbl1318.20027MR3407946DOI10.1134/S0037446615010127
- Mazurov, V. D., eds., E. I. Khukhro, The Kourovka Notebook. Unsolved Problems in Group Theory, Institute of Mathematics, Russian Academy of Sciences Siberian Division, Novosibirsk (2010). (2010) Zbl1211.20001MR3235009
- Vakula, I. A., 10.1134/S0081543811020192, Proc. Steklov Inst. Math. 272 (2011), 271-286 translated from Tr. Inst. Mat. Mekh. (Ekaterinburg) 16 2010 45-60 Russian. (2011) Zbl1233.20016MR3546195DOI10.1134/S0081543811020192
- Vasil'ev, A. V., On Thompson's conjecture, Sib. Elektron. Mat. Izv. 6 (2009), 457-464. (2009) Zbl1289.20057MR2586699
- Xu, M., 10.1007/s11464-013-0320-z, Front. Math. China 8 (2013), 1227-1236. (2013) Zbl1281.20018MR3091135DOI10.1007/s11464-013-0320-z
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.