Topological degree theory in fuzzy metric spaces
Archivum Mathematicum (2019)
- Volume: 055, Issue: 2, page 83-96
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topRashid, M.H.M.. "Topological degree theory in fuzzy metric spaces." Archivum Mathematicum 055.2 (2019): 83-96. <http://eudml.org/doc/294403>.
@article{Rashid2019,
abstract = {The aim of this paper is to modify the theory to fuzzy metric spaces, a natural extension of probabilistic ones. More precisely, the modification concerns fuzzily normed linear spaces, and, after defining a fuzzy concept of completeness, fuzzy Banach spaces. After discussing some properties of mappings with compact images, we define the (Leray-Schauder) degree by a sort of colimit extension of (already assumed) finite dimensional ones. Then, several properties of thus defined concept are proved. As an application, a fixed point theorem in the given context is presented.},
author = {Rashid, M.H.M.},
journal = {Archivum Mathematicum},
keywords = {fuzzy metric space; $t$-norm of $h$-type; topological degree theory},
language = {eng},
number = {2},
pages = {83-96},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Topological degree theory in fuzzy metric spaces},
url = {http://eudml.org/doc/294403},
volume = {055},
year = {2019},
}
TY - JOUR
AU - Rashid, M.H.M.
TI - Topological degree theory in fuzzy metric spaces
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 2
SP - 83
EP - 96
AB - The aim of this paper is to modify the theory to fuzzy metric spaces, a natural extension of probabilistic ones. More precisely, the modification concerns fuzzily normed linear spaces, and, after defining a fuzzy concept of completeness, fuzzy Banach spaces. After discussing some properties of mappings with compact images, we define the (Leray-Schauder) degree by a sort of colimit extension of (already assumed) finite dimensional ones. Then, several properties of thus defined concept are proved. As an application, a fixed point theorem in the given context is presented.
LA - eng
KW - fuzzy metric space; $t$-norm of $h$-type; topological degree theory
UR - http://eudml.org/doc/294403
ER -
References
top- Akhmerov, R.R., Kamenskii, M.I., Potapov, A.S., Rodkina, A.E., Sadovskii, B.N., Measures of noncompactness and condensing operators, Birkhäuser-Verlag, Basel-Boston-Berlin, 1992. (1992) MR1153247
- Amann, H., 10.1090/S0002-9939-1982-0660610-2, Proc. Amer. Math. Soc. 85 (1982), 591–595. (1982) MR0660610DOI10.1090/S0002-9939-1982-0660610-2
- Amann, H., Weiss, S., 10.1007/BF01178975, Math. Z. 130 (1973), 39–54. (1973) MR0346601DOI10.1007/BF01178975
- Bag, T., Samanta, S. K., Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (3) (2003), 687–705. (2003) MR2005663
- Blasi, F.S. De, Myjak, J., 10.1016/0022-247X(83)90261-5, J. Math. Anal. Appl. 92 (1983), 445–451. (1983) MR0697030DOI10.1016/0022-247X(83)90261-5
- Browder, F.E., Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Symp. Pura Math., vol. 18, Amer. Math. Soc. Providence, 1976. (1976) Zbl0327.47022MR0405188
- Browder, F.E., 10.1090/S0273-0979-1983-15153-4, Bull. Amer. Math. Soc. 9 (1) (1983), 1–41. (1983) MR0699315DOI10.1090/S0273-0979-1983-15153-4
- Browder, F.E., Nussbaum, R.D., 10.1090/S0002-9904-1968-11988-3, Bull. Amer. Math. Soc. 74 (1968), 671–676. (1968) MR0232257DOI10.1090/S0002-9904-1968-11988-3
- Cellina, A., Lasota, A., A new approach to the definition of topological degree for multi valued mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 47 (1969), 434–440. (1969) MR0276937
- Cho, Yeol Je, Chen, Yu-Qing, Topological Degree Theory and Applications, CRC Press, 2006. (2006) MR2223854
- Cronin, J., Fixed points and topological degree in nonlinear analysis, Mathematical Surveys, no. 11, American Mathematical Society, Providence, R.I, 1964, pp. xii+198 pp. (1964) MR0164101
- Deimling, K., Nonlinear functional analysis, Springer-Verlag, Berlin, 1985. (1985) MR0787404
- Diestel, J., Geometry of Banach spaces, Selected Topics, Lecture Notes in Math, vol. 485, Springer-Verlag, Berlin-New York, 1975, pp. xi+282 pp. (1975) MR0461094
- Fitzpatrick, .M., 10.1016/0022-247X(71)90201-0, J. Math. Anal. Appl. 35 (1971), 536–552. (1971) MR0281069DOI10.1016/0022-247X(71)90201-0
- Gilbarg, D., Trudinger, N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. (1983) Zbl0562.35001MR0737190
- Gossez, J.-P., 10.1016/0022-1236(72)90092-4, J. Funct. Anal. 11 (1972), 220–230. (1972) MR0350416DOI10.1016/0022-1236(72)90092-4
- Leray, J., Les problemes nonlineaires, Enseign. Math. 30 (1936), 141. (1936)
- Leray, J., Schauder, J., 10.24033/asens.836, Ann. Sci. Ecole. Norm. Sup. 51 (1934), 45–78. (1934) MR1509338DOI10.24033/asens.836
- Mawhin, J., Topological Degree Methods in Nonlinear Boundary Value Problems, Amer. Math. Soc., vol. 40, Providence, RI, 1979. (1979) Zbl0414.34025MR0525202
- Nǎdǎban, S., Dzitac, I., 10.15388/Informatica.2014.33, Informatica 25 (4) (2014), 643–662. (2014) MR3301468DOI10.15388/Informatica.2014.33
- Nirenberg, L., 10.1090/S0273-0979-1981-14888-6, Bull. Amer. Math. Soc. 4 (1981), 267–302. (1981) MR0609039DOI10.1090/S0273-0979-1981-14888-6
- Roldán, A., Martínez-Moreno, J., Roldán, C., On interrelationships between fuzzy metric structures, Iran. J. Fuzzy Syst. 10 (2) (2013), 133–150. (2013) MR3098998
- Schweizer, B., Sklar, A., 10.2140/pjm.1960.10.313, Pacific J. Math. 10 (1960), 313–334. (1960) Zbl0096.33203MR0115153DOI10.2140/pjm.1960.10.313
- Schweizer, B., Sklar, A., Probabilistical Metric Spaces, Dover Publications, New York, 2005. (2005) MR0790314
- Sherwood, H., 10.1007/BF00531809, Z. Wahrsch. Verw. Gebiete 6 (1966), 62–64. (1966) MR0212844DOI10.1007/BF00531809
- Wardowski, D., Fuzzy contractive mappings and fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 222 (2013), 108–114. (2013) MR3053895
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.