Topological degree theory in fuzzy metric spaces

M.H.M. Rashid

Archivum Mathematicum (2019)

  • Volume: 055, Issue: 2, page 83-96
  • ISSN: 0044-8753

Abstract

top
The aim of this paper is to modify the theory to fuzzy metric spaces, a natural extension of probabilistic ones. More precisely, the modification concerns fuzzily normed linear spaces, and, after defining a fuzzy concept of completeness, fuzzy Banach spaces. After discussing some properties of mappings with compact images, we define the (Leray-Schauder) degree by a sort of colimit extension of (already assumed) finite dimensional ones. Then, several properties of thus defined concept are proved. As an application, a fixed point theorem in the given context is presented.

How to cite

top

Rashid, M.H.M.. "Topological degree theory in fuzzy metric spaces." Archivum Mathematicum 055.2 (2019): 83-96. <http://eudml.org/doc/294403>.

@article{Rashid2019,
abstract = {The aim of this paper is to modify the theory to fuzzy metric spaces, a natural extension of probabilistic ones. More precisely, the modification concerns fuzzily normed linear spaces, and, after defining a fuzzy concept of completeness, fuzzy Banach spaces. After discussing some properties of mappings with compact images, we define the (Leray-Schauder) degree by a sort of colimit extension of (already assumed) finite dimensional ones. Then, several properties of thus defined concept are proved. As an application, a fixed point theorem in the given context is presented.},
author = {Rashid, M.H.M.},
journal = {Archivum Mathematicum},
keywords = {fuzzy metric space; $t$-norm of $h$-type; topological degree theory},
language = {eng},
number = {2},
pages = {83-96},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Topological degree theory in fuzzy metric spaces},
url = {http://eudml.org/doc/294403},
volume = {055},
year = {2019},
}

TY - JOUR
AU - Rashid, M.H.M.
TI - Topological degree theory in fuzzy metric spaces
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 2
SP - 83
EP - 96
AB - The aim of this paper is to modify the theory to fuzzy metric spaces, a natural extension of probabilistic ones. More precisely, the modification concerns fuzzily normed linear spaces, and, after defining a fuzzy concept of completeness, fuzzy Banach spaces. After discussing some properties of mappings with compact images, we define the (Leray-Schauder) degree by a sort of colimit extension of (already assumed) finite dimensional ones. Then, several properties of thus defined concept are proved. As an application, a fixed point theorem in the given context is presented.
LA - eng
KW - fuzzy metric space; $t$-norm of $h$-type; topological degree theory
UR - http://eudml.org/doc/294403
ER -

References

top
  1. Akhmerov, R.R., Kamenskii, M.I., Potapov, A.S., Rodkina, A.E., Sadovskii, B.N., Measures of noncompactness and condensing operators, Birkhäuser-Verlag, Basel-Boston-Berlin, 1992. (1992) MR1153247
  2. Amann, H., 10.1090/S0002-9939-1982-0660610-2, Proc. Amer. Math. Soc. 85 (1982), 591–595. (1982) MR0660610DOI10.1090/S0002-9939-1982-0660610-2
  3. Amann, H., Weiss, S., 10.1007/BF01178975, Math. Z. 130 (1973), 39–54. (1973) MR0346601DOI10.1007/BF01178975
  4. Bag, T., Samanta, S. K., Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (3) (2003), 687–705. (2003) MR2005663
  5. Blasi, F.S. De, Myjak, J., 10.1016/0022-247X(83)90261-5, J. Math. Anal. Appl. 92 (1983), 445–451. (1983) MR0697030DOI10.1016/0022-247X(83)90261-5
  6. Browder, F.E., Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Symp. Pura Math., vol. 18, Amer. Math. Soc. Providence, 1976. (1976) Zbl0327.47022MR0405188
  7. Browder, F.E., 10.1090/S0273-0979-1983-15153-4, Bull. Amer. Math. Soc. 9 (1) (1983), 1–41. (1983) MR0699315DOI10.1090/S0273-0979-1983-15153-4
  8. Browder, F.E., Nussbaum, R.D., 10.1090/S0002-9904-1968-11988-3, Bull. Amer. Math. Soc. 74 (1968), 671–676. (1968) MR0232257DOI10.1090/S0002-9904-1968-11988-3
  9. Cellina, A., Lasota, A., A new approach to the definition of topological degree for multi valued mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 47 (1969), 434–440. (1969) MR0276937
  10. Cho, Yeol Je, Chen, Yu-Qing, Topological Degree Theory and Applications, CRC Press, 2006. (2006) MR2223854
  11. Cronin, J., Fixed points and topological degree in nonlinear analysis, Mathematical Surveys, no. 11, American Mathematical Society, Providence, R.I, 1964, pp. xii+198 pp. (1964) MR0164101
  12. Deimling, K., Nonlinear functional analysis, Springer-Verlag, Berlin, 1985. (1985) MR0787404
  13. Diestel, J., Geometry of Banach spaces, Selected Topics, Lecture Notes in Math, vol. 485, Springer-Verlag, Berlin-New York, 1975, pp. xi+282 pp. (1975) MR0461094
  14. Fitzpatrick, .M., 10.1016/0022-247X(71)90201-0, J. Math. Anal. Appl. 35 (1971), 536–552. (1971) MR0281069DOI10.1016/0022-247X(71)90201-0
  15. Gilbarg, D., Trudinger, N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. (1983) Zbl0562.35001MR0737190
  16. Gossez, J.-P., 10.1016/0022-1236(72)90092-4, J. Funct. Anal. 11 (1972), 220–230. (1972) MR0350416DOI10.1016/0022-1236(72)90092-4
  17. Leray, J., Les problemes nonlineaires, Enseign. Math. 30 (1936), 141. (1936) 
  18. Leray, J., Schauder, J., 10.24033/asens.836, Ann. Sci. Ecole. Norm. Sup. 51 (1934), 45–78. (1934) MR1509338DOI10.24033/asens.836
  19. Mawhin, J., Topological Degree Methods in Nonlinear Boundary Value Problems, Amer. Math. Soc., vol. 40, Providence, RI, 1979. (1979) Zbl0414.34025MR0525202
  20. Nǎdǎban, S., Dzitac, I., 10.15388/Informatica.2014.33, Informatica 25 (4) (2014), 643–662. (2014) MR3301468DOI10.15388/Informatica.2014.33
  21. Nirenberg, L., 10.1090/S0273-0979-1981-14888-6, Bull. Amer. Math. Soc. 4 (1981), 267–302. (1981) MR0609039DOI10.1090/S0273-0979-1981-14888-6
  22. Roldán, A., Martínez-Moreno, J., Roldán, C., On interrelationships between fuzzy metric structures, Iran. J. Fuzzy Syst. 10 (2) (2013), 133–150. (2013) MR3098998
  23. Schweizer, B., Sklar, A., 10.2140/pjm.1960.10.313, Pacific J. Math. 10 (1960), 313–334. (1960) Zbl0096.33203MR0115153DOI10.2140/pjm.1960.10.313
  24. Schweizer, B., Sklar, A., Probabilistical Metric Spaces, Dover Publications, New York, 2005. (2005) MR0790314
  25. Sherwood, H., 10.1007/BF00531809, Z. Wahrsch. Verw. Gebiete 6 (1966), 62–64. (1966) MR0212844DOI10.1007/BF00531809
  26. Wardowski, D., Fuzzy contractive mappings and fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 222 (2013), 108–114. (2013) MR3053895

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.