A new algorithm for approximating the least concave majorant
Martin Franců; Ron Kerman; Gord Sinnamon
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 4, page 1071-1093
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFranců, Martin, Kerman, Ron, and Sinnamon, Gord. "A new algorithm for approximating the least concave majorant." Czechoslovak Mathematical Journal 67.4 (2017): 1071-1093. <http://eudml.org/doc/294413>.
@article{Franců2017,
abstract = {The least concave majorant, $\hat\{F\}$, of a continuous function $F$ on a closed interval, $I$, is defined by \[ \hat\{F\} (x) = \inf \lbrace G(x)\colon G \ge F,\ G \text\{ concave\}\rbrace ,\quad x \in I. \]
We present an algorithm, in the spirit of the Jarvis March, to approximate the least concave majorant of a differentiable piecewise polynomial function of degree at most three on $I$. Given any function $F \in \mathcal \{C\}^4(I)$, it can be well-approximated on $I$ by a clamped cubic spline $S$. We show that $\hat\{S\}$ is then a good approximation to $\hat\{F\}$. We give two examples, one to illustrate, the other to apply our algorithm.},
author = {Franců, Martin, Kerman, Ron, Sinnamon, Gord},
journal = {Czechoslovak Mathematical Journal},
keywords = {least concave majorant; level function; spline approximation},
language = {eng},
number = {4},
pages = {1071-1093},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new algorithm for approximating the least concave majorant},
url = {http://eudml.org/doc/294413},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Franců, Martin
AU - Kerman, Ron
AU - Sinnamon, Gord
TI - A new algorithm for approximating the least concave majorant
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 1071
EP - 1093
AB - The least concave majorant, $\hat{F}$, of a continuous function $F$ on a closed interval, $I$, is defined by \[ \hat{F} (x) = \inf \lbrace G(x)\colon G \ge F,\ G \text{ concave}\rbrace ,\quad x \in I. \]
We present an algorithm, in the spirit of the Jarvis March, to approximate the least concave majorant of a differentiable piecewise polynomial function of degree at most three on $I$. Given any function $F \in \mathcal {C}^4(I)$, it can be well-approximated on $I$ by a clamped cubic spline $S$. We show that $\hat{S}$ is then a good approximation to $\hat{F}$. We give two examples, one to illustrate, the other to apply our algorithm.
LA - eng
KW - least concave majorant; level function; spline approximation
UR - http://eudml.org/doc/294413
ER -
References
top- Brudnyĭ, Y. A., Krugljak, N. Y., Interpolation Functors and Interpolation Spaces. Vol. 1, North-Holland Mathematical Library 47, Amsterdam (1991). (1991) Zbl0743.46082MR1107298
- Carolan, C. A., 10.2307/3315954, Can. J. Stat. 30 (2002), 317-328. (2002) Zbl1012.62052MR1926068DOI10.2307/3315954
- Debreu, G., 10.1016/0304-4068(76)90020-3, J. Math. Econ. 3 (1976), 121-129. (1976) Zbl0361.90007MR0411563DOI10.1016/0304-4068(76)90020-3
- Hall, C. A., Meyer, W. W., 10.1016/0021-9045(76)90040-x, J. Approximation Theory 16 (1976), 105-122. (1976) Zbl0316.41007MR0397247DOI10.1016/0021-9045(76)90040-x
- Halperin, I., 10.4153/CJM-1953-031-3, Can. J. Math. 5 (1953), 273-288. (1953) Zbl0052.11303MR0056195DOI10.4153/CJM-1953-031-3
- Härdle, W., Kerkyacharian, G., Picard, D., Tsybakov, A., 10.1007/978-1-4612-2222-4, Lecture Notes in Statistics 129, Springer, Berlin (1998). (1998) Zbl0899.62002MR1618204DOI10.1007/978-1-4612-2222-4
- Jarvis, R. A., 10.1016/0020-0190(73)90020-3, Inf. Process. Lett. 2 (1973), 18-21. (1973) Zbl0256.68041MR0381227DOI10.1016/0020-0190(73)90020-3
- Kerman, R., Milman, M., Sinnamon, G., 10.5209/rev_rema.2007.v20.n2.16492, Rev. Mat. Complut. 20 (2007), 367-389. (2007) Zbl1144.46058MR2351114DOI10.5209/rev_rema.2007.v20.n2.16492
- Lorentz, G. G., Bernstein Polynomials, Mathematical Expositions, no. 8. University of Toronto Press X, Toronto (1953). (1953) Zbl0051.05001MR0057370
- Mastyło, M., Sinnamon, G., 10.1016/j.jfa.2006.05.007, J. Funct. Anal. 240 (2006), 192-225. (2006) Zbl1116.46015MR2259895DOI10.1016/j.jfa.2006.05.007
- Peetre, J., 10.1007/BF01894779, Acta Math. Acad. Sci. Hung. 21 (1970), 327-333. (1970) Zbl0204.38002MR0272960DOI10.1007/BF01894779
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.