On -permutably embedded subgroups of finite groups
Chenchen Cao; Li Zhang; Wenbin Guo
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 1, page 11-24
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCao, Chenchen, Zhang, Li, and Guo, Wenbin. "On $\sigma $-permutably embedded subgroups of finite groups." Czechoslovak Mathematical Journal 69.1 (2019): 11-24. <http://eudml.org/doc/294418>.
@article{Cao2019,
abstract = {Let $\sigma =\lbrace \sigma _i\colon i\in I\rbrace $ be some partition of the set of all primes $\mathbb \{P\}$, $G$ be a finite group and $\sigma (G)=\lbrace \sigma _i\colon \sigma _i\cap \pi (G)\ne \emptyset \rbrace $. A set $\mathcal \{H\}$ of subgroups of $G$ is said to be a complete Hall $\sigma $-set of $G$ if every non-identity member of $\mathcal \{H\}$ is a Hall $\sigma _i$-subgroup of $G$ and $\mathcal \{H\}$ contains exactly one Hall $\sigma _i$-subgroup of $G$ for every $\sigma _i\in \sigma (G)$. $G$ is said to be $\sigma $-full if $G$ possesses a complete Hall $\sigma $-set. A subgroup $H$ of $G$ is $\sigma $-permutable in $G$ if $G$ possesses a complete Hall $\sigma $-set $\mathcal \{H\}$ such that $HA^x$= $A^xH$ for all $A\in \mathcal \{H\}$ and all $x\in G$. A subgroup $H$ of $G$ is $\sigma $-permutably embedded in $G$ if $H$ is $\sigma $-full and for every $\sigma _i\in \sigma (H)$, every Hall $\sigma _i$-subgroup of $H$ is also a Hall $\sigma _i$-subgroup of some $\sigma $-permutable subgroup of $G$. By using the $\sigma $-permutably embedded subgroups, we establish some new criteria for a group $G$ to be soluble and supersoluble, and also give the conditions under which a normal subgroup of $G$ is hypercyclically embedded. Some known results are generalized.},
author = {Cao, Chenchen, Zhang, Li, Guo, Wenbin},
journal = {Czechoslovak Mathematical Journal},
keywords = {finite group; $\sigma $-subnormal subgroup; $\sigma $-permutably embedded subgroup; $\sigma $-soluble group; supersoluble group},
language = {eng},
number = {1},
pages = {11-24},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On $\sigma $-permutably embedded subgroups of finite groups},
url = {http://eudml.org/doc/294418},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Cao, Chenchen
AU - Zhang, Li
AU - Guo, Wenbin
TI - On $\sigma $-permutably embedded subgroups of finite groups
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 11
EP - 24
AB - Let $\sigma =\lbrace \sigma _i\colon i\in I\rbrace $ be some partition of the set of all primes $\mathbb {P}$, $G$ be a finite group and $\sigma (G)=\lbrace \sigma _i\colon \sigma _i\cap \pi (G)\ne \emptyset \rbrace $. A set $\mathcal {H}$ of subgroups of $G$ is said to be a complete Hall $\sigma $-set of $G$ if every non-identity member of $\mathcal {H}$ is a Hall $\sigma _i$-subgroup of $G$ and $\mathcal {H}$ contains exactly one Hall $\sigma _i$-subgroup of $G$ for every $\sigma _i\in \sigma (G)$. $G$ is said to be $\sigma $-full if $G$ possesses a complete Hall $\sigma $-set. A subgroup $H$ of $G$ is $\sigma $-permutable in $G$ if $G$ possesses a complete Hall $\sigma $-set $\mathcal {H}$ such that $HA^x$= $A^xH$ for all $A\in \mathcal {H}$ and all $x\in G$. A subgroup $H$ of $G$ is $\sigma $-permutably embedded in $G$ if $H$ is $\sigma $-full and for every $\sigma _i\in \sigma (H)$, every Hall $\sigma _i$-subgroup of $H$ is also a Hall $\sigma _i$-subgroup of some $\sigma $-permutable subgroup of $G$. By using the $\sigma $-permutably embedded subgroups, we establish some new criteria for a group $G$ to be soluble and supersoluble, and also give the conditions under which a normal subgroup of $G$ is hypercyclically embedded. Some known results are generalized.
LA - eng
KW - finite group; $\sigma $-subnormal subgroup; $\sigma $-permutably embedded subgroup; $\sigma $-soluble group; supersoluble group
UR - http://eudml.org/doc/294418
ER -
References
top- Asaad, M., 10.1007/BF01194016, Arch. Math. 51 (1988), 289-293. (1988) Zbl0656.20031MR0964952DOI10.1007/BF01194016
- Asaad, M., 10.1080/00927879808826364, Commun. Algebra 26 (1998), 3647-3652. (1998) Zbl0915.20008MR1647102DOI10.1080/00927879808826364
- Asaad, M., Heliel, A. A., 10.1016/S0022-4049(00)00183-3, J. Pure Appl. Algebra 165 (2001), 129-135. (2001) MR1865961DOI10.1016/S0022-4049(00)00183-3
- Asaad, M., Ramadan, M., Shaalan, A., 10.1007/BF01246766, Arch. Math. 56 (1991), 521-527. (1991) Zbl0738.20026MR1106492DOI10.1007/BF01246766
- Ballester-Bolinches, A., 10.1007/BF01196571, Arch. Math. 65 (1995), 1-7. (1995) Zbl0823.20020MR1336215DOI10.1007/BF01196571
- Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M., Products of Finite Groups, De Gruyter Expositions in Mathematics 53, Walter de Gruyter, Berlin (2010). (2010) Zbl1206.20019MR2762634
- Ballester-Bolinches, A., Pedraza-Aguilera, M. C., 10.1007/BF00052909, Acta Math. Hung. 73 (1996), 335-342. (1996) Zbl0930.20021MR1428040DOI10.1007/BF00052909
- Ballester-Bolinches, A., Pedraza-Aguilera, M. C., 10.1016/S0022-4049(96)00172-7, J. Pure Appl. Algebra 127 (1998), 113-118. (1998) Zbl0928.20020MR1620696DOI10.1016/S0022-4049(96)00172-7
- Bray, H. G., Deskins, W. E., Johnson, D., Humphreys, J. F., Puttaswamaiah, B. M., Venzke, P., Walls, G. L., Between Nilpotent and Solvable, Polygonal Publ. House, Washington (1982). (1982) Zbl0488.20001MR0655785
- Buckley, J. T., 10.1007/BF01110184, Math. Z. 116 (1970), 15-17. (1970) Zbl0202.02303MR0262359DOI10.1007/BF01110184
- Chen, X., Guo, W., Skiba, A. N., 10.1080/00927872.2013.806519, Commun. Algebra 42 (2014), 4188-4203. (2014) Zbl1316.20013MR3210366DOI10.1080/00927872.2013.806519
- Doerk, K., Hawkes, T., Finite Soluble Groups, De Gruyter Expositions in Mathematics 4, Walter de Gruyter, Berlin (1992). (1992) Zbl0753.20001MR1169099
- Gorenstein, D., Finite Groups, Harper's Series in Modern Mathematics, Harper and Row, Publishers, New York (1968). (1968) Zbl0185.05701MR0231903
- Guo, W., 10.1007/978-94-011-4054-6, Mathematics and Its Applications 505, Kluwer Academic Publishers, Dordrecht; Science Press, Beijing (2000). (2000) Zbl1005.20016MR1862683DOI10.1007/978-94-011-4054-6
- Guo, W., 10.1007/978-3-662-45747-4, Springer, Berlin (2015). (2015) Zbl1343.20021MR3331254DOI10.1007/978-3-662-45747-4
- Guo, W., Cao, C., Skiba, A. N., Sinitsa, D. A., 10.1007/s40304-017-0101-1, Commun. Math. Stat. 5 (2017), 83-92. (2017) Zbl1372.20026MR3627596DOI10.1007/s40304-017-0101-1
- Guo, W., Skiba, A. N., 10.1016/j.jalgebra.2015.02.025, J. Algebra 432 (2015), 205-227. (2015) Zbl1329.20023MR3334146DOI10.1016/j.jalgebra.2015.02.025
- Guo, W., Skiba, A. N., 10.1515/jgth-2014-0045, J. Group Theory 18 (2015), 191-200. (2015) Zbl1332.20020MR3318533DOI10.1515/jgth-2014-0045
- Guo, W., Skiba, A. N., 10.1515/jgth-2016-0032, J. Group Theory 20 (2017), 169-183. (2017) Zbl06718371MR3592610DOI10.1515/jgth-2016-0032
- Guo, W., Skiba, A. N., 10.1007/s00605-016-1007-9, Monatsh. Math. 185 (2018), 443-453. (2018) Zbl06857731MR3767728DOI10.1007/s00605-016-1007-9
- Huppert, B., 10.1007/978-3-642-64981-3, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen 134. Springer, Berlin German (1967). (1967) Zbl0217.07201MR0224703DOI10.1007/978-3-642-64981-3
- Huppert, B., Blackburn, N., 10.1007/978-3-642-67997-1, Grundlehren der Mathematischen Wissenschaften 243, Springer, Berlin (1982). (1982) Zbl0514.20002MR0662826DOI10.1007/978-3-642-67997-1
- Li, B., 10.1016/j.jalgebra.2010.12.018, J. Algebra 334 (2011), 321-337. (2011) Zbl1248.20020MR2787667DOI10.1016/j.jalgebra.2010.12.018
- Li, Y., Wang, Y., 10.1016/j.jalgebra.2004.06.026, J. Algebra 281 (2004), 109-123. (2004) Zbl1079.20026MR2091963DOI10.1016/j.jalgebra.2004.06.026
- Schmidt, R., Subgroup Lattices of Groups, De Gruyter Expositions in Mathematics 14, Walter de Gruyter, Berlin (1994). (1994) Zbl0843.20003MR1292462
- Skiba, A. N., 10.1016/j.jalgebra.2007.04.025, J. Algebra 315 (2007), 192-209. (2007) Zbl1130.20019MR2344341DOI10.1016/j.jalgebra.2007.04.025
- Skiba, A. N., 10.1515/JGT.2010.027, J. Group Theory 13 (2010), 841-850. (2010) Zbl1205.20027MR2736160DOI10.1515/JGT.2010.027
- Skiba, A. N., 10.1016/j.jpaa.2010.04.017, J. Pure Appl. Algebra 215 (2011), 257-261. (2011) Zbl1206.20020MR2729221DOI10.1016/j.jpaa.2010.04.017
- Skiba, A. N., 10.1016/j.jalgebra.2015.04.010, J. Algebra 436 (2015), 1-16. (2015) Zbl1316.20020MR3348466DOI10.1016/j.jalgebra.2015.04.010
- Skiba, A. N., 10.1007/s40304-016-0088-z, Commun. Math. Stat. 4 (2016), 281-309. (2016) Zbl06722784MR3554918DOI10.1007/s40304-016-0088-z
- Srinivasan, S., 10.1007/BF02761191, Isr. J. Math. 35 (1980), 210-214. (1980) Zbl0437.20012MR0576471DOI10.1007/BF02761191
- Zhang, C., Wu, Z., Guo, W., 10.5486/PMD.2017.7815, Pub. Math. Debrecen. 91 (2017), 489-502. (2017) MR3744809DOI10.5486/PMD.2017.7815
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.