On σ -permutably embedded subgroups of finite groups

Chenchen Cao; Li Zhang; Wenbin Guo

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 1, page 11-24
  • ISSN: 0011-4642

Abstract

top
Let σ = { σ i : i I } be some partition of the set of all primes , G be a finite group and σ ( G ) = { σ i : σ i π ( G ) } . A set of subgroups of G is said to be a complete Hall σ -set of G if every non-identity member of is a Hall σ i -subgroup of G and contains exactly one Hall σ i -subgroup of G for every σ i σ ( G ) . G is said to be σ -full if G possesses a complete Hall σ -set. A subgroup H of G is σ -permutable in G if G possesses a complete Hall σ -set such that H A x = A x H for all A and all x G . A subgroup H of G is σ -permutably embedded in G if H is σ -full and for every σ i σ ( H ) , every Hall σ i -subgroup of H is also a Hall σ i -subgroup of some σ -permutable subgroup of G . By using the σ -permutably embedded subgroups, we establish some new criteria for a group G to be soluble and supersoluble, and also give the conditions under which a normal subgroup of G is hypercyclically embedded. Some known results are generalized.

How to cite

top

Cao, Chenchen, Zhang, Li, and Guo, Wenbin. "On $\sigma $-permutably embedded subgroups of finite groups." Czechoslovak Mathematical Journal 69.1 (2019): 11-24. <http://eudml.org/doc/294418>.

@article{Cao2019,
abstract = {Let $\sigma =\lbrace \sigma _i\colon i\in I\rbrace $ be some partition of the set of all primes $\mathbb \{P\}$, $G$ be a finite group and $\sigma (G)=\lbrace \sigma _i\colon \sigma _i\cap \pi (G)\ne \emptyset \rbrace $. A set $\mathcal \{H\}$ of subgroups of $G$ is said to be a complete Hall $\sigma $-set of $G$ if every non-identity member of $\mathcal \{H\}$ is a Hall $\sigma _i$-subgroup of $G$ and $\mathcal \{H\}$ contains exactly one Hall $\sigma _i$-subgroup of $G$ for every $\sigma _i\in \sigma (G)$. $G$ is said to be $\sigma $-full if $G$ possesses a complete Hall $\sigma $-set. A subgroup $H$ of $G$ is $\sigma $-permutable in $G$ if $G$ possesses a complete Hall $\sigma $-set $\mathcal \{H\}$ such that $HA^x$= $A^xH$ for all $A\in \mathcal \{H\}$ and all $x\in G$. A subgroup $H$ of $G$ is $\sigma $-permutably embedded in $G$ if $H$ is $\sigma $-full and for every $\sigma _i\in \sigma (H)$, every Hall $\sigma _i$-subgroup of $H$ is also a Hall $\sigma _i$-subgroup of some $\sigma $-permutable subgroup of $G$. By using the $\sigma $-permutably embedded subgroups, we establish some new criteria for a group $G$ to be soluble and supersoluble, and also give the conditions under which a normal subgroup of $G$ is hypercyclically embedded. Some known results are generalized.},
author = {Cao, Chenchen, Zhang, Li, Guo, Wenbin},
journal = {Czechoslovak Mathematical Journal},
keywords = {finite group; $\sigma $-subnormal subgroup; $\sigma $-permutably embedded subgroup; $\sigma $-soluble group; supersoluble group},
language = {eng},
number = {1},
pages = {11-24},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On $\sigma $-permutably embedded subgroups of finite groups},
url = {http://eudml.org/doc/294418},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Cao, Chenchen
AU - Zhang, Li
AU - Guo, Wenbin
TI - On $\sigma $-permutably embedded subgroups of finite groups
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 11
EP - 24
AB - Let $\sigma =\lbrace \sigma _i\colon i\in I\rbrace $ be some partition of the set of all primes $\mathbb {P}$, $G$ be a finite group and $\sigma (G)=\lbrace \sigma _i\colon \sigma _i\cap \pi (G)\ne \emptyset \rbrace $. A set $\mathcal {H}$ of subgroups of $G$ is said to be a complete Hall $\sigma $-set of $G$ if every non-identity member of $\mathcal {H}$ is a Hall $\sigma _i$-subgroup of $G$ and $\mathcal {H}$ contains exactly one Hall $\sigma _i$-subgroup of $G$ for every $\sigma _i\in \sigma (G)$. $G$ is said to be $\sigma $-full if $G$ possesses a complete Hall $\sigma $-set. A subgroup $H$ of $G$ is $\sigma $-permutable in $G$ if $G$ possesses a complete Hall $\sigma $-set $\mathcal {H}$ such that $HA^x$= $A^xH$ for all $A\in \mathcal {H}$ and all $x\in G$. A subgroup $H$ of $G$ is $\sigma $-permutably embedded in $G$ if $H$ is $\sigma $-full and for every $\sigma _i\in \sigma (H)$, every Hall $\sigma _i$-subgroup of $H$ is also a Hall $\sigma _i$-subgroup of some $\sigma $-permutable subgroup of $G$. By using the $\sigma $-permutably embedded subgroups, we establish some new criteria for a group $G$ to be soluble and supersoluble, and also give the conditions under which a normal subgroup of $G$ is hypercyclically embedded. Some known results are generalized.
LA - eng
KW - finite group; $\sigma $-subnormal subgroup; $\sigma $-permutably embedded subgroup; $\sigma $-soluble group; supersoluble group
UR - http://eudml.org/doc/294418
ER -

References

top
  1. Asaad, M., 10.1007/BF01194016, Arch. Math. 51 (1988), 289-293. (1988) Zbl0656.20031MR0964952DOI10.1007/BF01194016
  2. Asaad, M., 10.1080/00927879808826364, Commun. Algebra 26 (1998), 3647-3652. (1998) Zbl0915.20008MR1647102DOI10.1080/00927879808826364
  3. Asaad, M., Heliel, A. A., 10.1016/S0022-4049(00)00183-3, J. Pure Appl. Algebra 165 (2001), 129-135. (2001) MR1865961DOI10.1016/S0022-4049(00)00183-3
  4. Asaad, M., Ramadan, M., Shaalan, A., 10.1007/BF01246766, Arch. Math. 56 (1991), 521-527. (1991) Zbl0738.20026MR1106492DOI10.1007/BF01246766
  5. Ballester-Bolinches, A., 10.1007/BF01196571, Arch. Math. 65 (1995), 1-7. (1995) Zbl0823.20020MR1336215DOI10.1007/BF01196571
  6. Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M., Products of Finite Groups, De Gruyter Expositions in Mathematics 53, Walter de Gruyter, Berlin (2010). (2010) Zbl1206.20019MR2762634
  7. Ballester-Bolinches, A., Pedraza-Aguilera, M. C., 10.1007/BF00052909, Acta Math. Hung. 73 (1996), 335-342. (1996) Zbl0930.20021MR1428040DOI10.1007/BF00052909
  8. Ballester-Bolinches, A., Pedraza-Aguilera, M. C., 10.1016/S0022-4049(96)00172-7, J. Pure Appl. Algebra 127 (1998), 113-118. (1998) Zbl0928.20020MR1620696DOI10.1016/S0022-4049(96)00172-7
  9. Bray, H. G., Deskins, W. E., Johnson, D., Humphreys, J. F., Puttaswamaiah, B. M., Venzke, P., Walls, G. L., Between Nilpotent and Solvable, Polygonal Publ. House, Washington (1982). (1982) Zbl0488.20001MR0655785
  10. Buckley, J. T., 10.1007/BF01110184, Math. Z. 116 (1970), 15-17. (1970) Zbl0202.02303MR0262359DOI10.1007/BF01110184
  11. Chen, X., Guo, W., Skiba, A. N., 10.1080/00927872.2013.806519, Commun. Algebra 42 (2014), 4188-4203. (2014) Zbl1316.20013MR3210366DOI10.1080/00927872.2013.806519
  12. Doerk, K., Hawkes, T., Finite Soluble Groups, De Gruyter Expositions in Mathematics 4, Walter de Gruyter, Berlin (1992). (1992) Zbl0753.20001MR1169099
  13. Gorenstein, D., Finite Groups, Harper's Series in Modern Mathematics, Harper and Row, Publishers, New York (1968). (1968) Zbl0185.05701MR0231903
  14. Guo, W., 10.1007/978-94-011-4054-6, Mathematics and Its Applications 505, Kluwer Academic Publishers, Dordrecht; Science Press, Beijing (2000). (2000) Zbl1005.20016MR1862683DOI10.1007/978-94-011-4054-6
  15. Guo, W., 10.1007/978-3-662-45747-4, Springer, Berlin (2015). (2015) Zbl1343.20021MR3331254DOI10.1007/978-3-662-45747-4
  16. Guo, W., Cao, C., Skiba, A. N., Sinitsa, D. A., 10.1007/s40304-017-0101-1, Commun. Math. Stat. 5 (2017), 83-92. (2017) Zbl1372.20026MR3627596DOI10.1007/s40304-017-0101-1
  17. Guo, W., Skiba, A. N., 10.1016/j.jalgebra.2015.02.025, J. Algebra 432 (2015), 205-227. (2015) Zbl1329.20023MR3334146DOI10.1016/j.jalgebra.2015.02.025
  18. Guo, W., Skiba, A. N., 10.1515/jgth-2014-0045, J. Group Theory 18 (2015), 191-200. (2015) Zbl1332.20020MR3318533DOI10.1515/jgth-2014-0045
  19. Guo, W., Skiba, A. N., 10.1515/jgth-2016-0032, J. Group Theory 20 (2017), 169-183. (2017) Zbl06718371MR3592610DOI10.1515/jgth-2016-0032
  20. Guo, W., Skiba, A. N., 10.1007/s00605-016-1007-9, Monatsh. Math. 185 (2018), 443-453. (2018) Zbl06857731MR3767728DOI10.1007/s00605-016-1007-9
  21. Huppert, B., 10.1007/978-3-642-64981-3, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen 134. Springer, Berlin German (1967). (1967) Zbl0217.07201MR0224703DOI10.1007/978-3-642-64981-3
  22. Huppert, B., Blackburn, N., 10.1007/978-3-642-67997-1, Grundlehren der Mathematischen Wissenschaften 243, Springer, Berlin (1982). (1982) Zbl0514.20002MR0662826DOI10.1007/978-3-642-67997-1
  23. Li, B., 10.1016/j.jalgebra.2010.12.018, J. Algebra 334 (2011), 321-337. (2011) Zbl1248.20020MR2787667DOI10.1016/j.jalgebra.2010.12.018
  24. Li, Y., Wang, Y., 10.1016/j.jalgebra.2004.06.026, J. Algebra 281 (2004), 109-123. (2004) Zbl1079.20026MR2091963DOI10.1016/j.jalgebra.2004.06.026
  25. Schmidt, R., Subgroup Lattices of Groups, De Gruyter Expositions in Mathematics 14, Walter de Gruyter, Berlin (1994). (1994) Zbl0843.20003MR1292462
  26. Skiba, A. N., 10.1016/j.jalgebra.2007.04.025, J. Algebra 315 (2007), 192-209. (2007) Zbl1130.20019MR2344341DOI10.1016/j.jalgebra.2007.04.025
  27. Skiba, A. N., 10.1515/JGT.2010.027, J. Group Theory 13 (2010), 841-850. (2010) Zbl1205.20027MR2736160DOI10.1515/JGT.2010.027
  28. Skiba, A. N., 10.1016/j.jpaa.2010.04.017, J. Pure Appl. Algebra 215 (2011), 257-261. (2011) Zbl1206.20020MR2729221DOI10.1016/j.jpaa.2010.04.017
  29. Skiba, A. N., 10.1016/j.jalgebra.2015.04.010, J. Algebra 436 (2015), 1-16. (2015) Zbl1316.20020MR3348466DOI10.1016/j.jalgebra.2015.04.010
  30. Skiba, A. N., 10.1007/s40304-016-0088-z, Commun. Math. Stat. 4 (2016), 281-309. (2016) Zbl06722784MR3554918DOI10.1007/s40304-016-0088-z
  31. Srinivasan, S., 10.1007/BF02761191, Isr. J. Math. 35 (1980), 210-214. (1980) Zbl0437.20012MR0576471DOI10.1007/BF02761191
  32. Zhang, C., Wu, Z., Guo, W., 10.5486/PMD.2017.7815, Pub. Math. Debrecen. 91 (2017), 489-502. (2017) MR3744809DOI10.5486/PMD.2017.7815

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.