Automorphism liftable modules

Chelliah Selvaraj; Sudalaimuthu Santhakumar

Commentationes Mathematicae Universitatis Carolinae (2018)

  • Volume: 59, Issue: 1, page 35-44
  • ISSN: 0010-2628

Abstract

top
We introduce the notion of an automorphism liftable module and give a characterization to it. We prove that category equivalence preserves automorphism liftable. Furthermore, we characterize semisimple rings, perfect rings, hereditary rings and quasi-Frobenius rings by properties of automorphism liftable modules. Also, we study automorphism liftable modules with summand sum property (SSP) and summand intersection property (SIP).

How to cite

top

Selvaraj, Chelliah, and Santhakumar, Sudalaimuthu. "Automorphism liftable modules." Commentationes Mathematicae Universitatis Carolinae 59.1 (2018): 35-44. <http://eudml.org/doc/294427>.

@article{Selvaraj2018,
abstract = {We introduce the notion of an automorphism liftable module and give a characterization to it. We prove that category equivalence preserves automorphism liftable. Furthermore, we characterize semisimple rings, perfect rings, hereditary rings and quasi-Frobenius rings by properties of automorphism liftable modules. Also, we study automorphism liftable modules with summand sum property (SSP) and summand intersection property (SIP).},
author = {Selvaraj, Chelliah, Santhakumar, Sudalaimuthu},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {dual automorphism invariant module; supplemented module; semisimple ring; perfect ring; summand sum property},
language = {eng},
number = {1},
pages = {35-44},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Automorphism liftable modules},
url = {http://eudml.org/doc/294427},
volume = {59},
year = {2018},
}

TY - JOUR
AU - Selvaraj, Chelliah
AU - Santhakumar, Sudalaimuthu
TI - Automorphism liftable modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 1
SP - 35
EP - 44
AB - We introduce the notion of an automorphism liftable module and give a characterization to it. We prove that category equivalence preserves automorphism liftable. Furthermore, we characterize semisimple rings, perfect rings, hereditary rings and quasi-Frobenius rings by properties of automorphism liftable modules. Also, we study automorphism liftable modules with summand sum property (SSP) and summand intersection property (SIP).
LA - eng
KW - dual automorphism invariant module; supplemented module; semisimple ring; perfect ring; summand sum property
UR - http://eudml.org/doc/294427
ER -

References

top
  1. Alkan M., Harmanci A., On summand sum and summand intersection property of modules, Turkish J. Math. 26 (2002), 131–147. 
  2. Bass H., 10.1090/S0002-9947-1960-0157984-8, Trans. Amer. Math. Soc. 95 (1960), 466–488. DOI10.1090/S0002-9947-1960-0157984-8
  3. Byrd K. A., 10.1007/BF01433274, Math. Ann. 186 (1970), 163–170. DOI10.1007/BF01433274
  4. Garcia J. L., 10.1080/00927878908823714, Comm. Algebra 17 (1989), 73–92. DOI10.1080/00927878908823714
  5. Golan J. S., 10.1007/BF02771548, Israel J. Math. 8 (1970), 34–38. DOI10.1007/BF02771548
  6. Golan J. S., 10.1090/S0002-9939-1971-0280551-5, , Proc. Amer. Math. Soc. 28 (1971), no. 2, 337–343. DOI10.1090/S0002-9939-1971-0280551-5
  7. Golan J. S., 10.1090/S0002-9939-1972-0302700-3, , Proc. Amer. Math. Soc. 31 (1972), no. 2, 401–408. DOI10.1090/S0002-9939-1972-0302700-3
  8. Koşan M. T., Ha N. T. T., Quynh T. C., 10.1142/S021949881650078X, J. Algebra Appl. 15 (2016), no. 5, 1650078, 11 pp. DOI10.1142/S021949881650078X
  9. Satyanarayana M., 10.2307/2313615, Amer. Math. Monthly 74 (1967), 1086. DOI10.2307/2313615
  10. Selvaraj C., Santhakumar S., 10.1142/S0219498817500244, J. Algebra Appl. 16 (2017), no. 2, 1750024, 11 pp. DOI10.1142/S0219498817500244
  11. Singh S., Srivastava A. K., 10.1016/j.jalgebra.2012.08.012, J. Algebra 371 (2012), 262–275. DOI10.1016/j.jalgebra.2012.08.012
  12. Tuganbaev A. A., 10.1515/dma-2013-006, Discrete Math. Appl. 23 (2013), no. 1, 115–124. DOI10.1515/dma-2013-006
  13. Tütüncü D. K., 10.1007/s13373-012-0020-0, Bull. Math. Sci. 2 (2012), 359–363. DOI10.1007/s13373-012-0020-0
  14. Ware R., 10.1090/S0002-9947-1971-0274511-2, Trans. Amer. Math. Soc. 155 (1971), 233–256. DOI10.1090/S0002-9947-1971-0274511-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.