Automorphism liftable modules
Chelliah Selvaraj; Sudalaimuthu Santhakumar
Commentationes Mathematicae Universitatis Carolinae (2018)
- Volume: 59, Issue: 1, page 35-44
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSelvaraj, Chelliah, and Santhakumar, Sudalaimuthu. "Automorphism liftable modules." Commentationes Mathematicae Universitatis Carolinae 59.1 (2018): 35-44. <http://eudml.org/doc/294427>.
@article{Selvaraj2018,
abstract = {We introduce the notion of an automorphism liftable module and give a characterization to it. We prove that category equivalence preserves automorphism liftable. Furthermore, we characterize semisimple rings, perfect rings, hereditary rings and quasi-Frobenius rings by properties of automorphism liftable modules. Also, we study automorphism liftable modules with summand sum property (SSP) and summand intersection property (SIP).},
author = {Selvaraj, Chelliah, Santhakumar, Sudalaimuthu},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {dual automorphism invariant module; supplemented module; semisimple ring; perfect ring; summand sum property},
language = {eng},
number = {1},
pages = {35-44},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Automorphism liftable modules},
url = {http://eudml.org/doc/294427},
volume = {59},
year = {2018},
}
TY - JOUR
AU - Selvaraj, Chelliah
AU - Santhakumar, Sudalaimuthu
TI - Automorphism liftable modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 1
SP - 35
EP - 44
AB - We introduce the notion of an automorphism liftable module and give a characterization to it. We prove that category equivalence preserves automorphism liftable. Furthermore, we characterize semisimple rings, perfect rings, hereditary rings and quasi-Frobenius rings by properties of automorphism liftable modules. Also, we study automorphism liftable modules with summand sum property (SSP) and summand intersection property (SIP).
LA - eng
KW - dual automorphism invariant module; supplemented module; semisimple ring; perfect ring; summand sum property
UR - http://eudml.org/doc/294427
ER -
References
top- Alkan M., Harmanci A., On summand sum and summand intersection property of modules, Turkish J. Math. 26 (2002), 131–147.
- Bass H., 10.1090/S0002-9947-1960-0157984-8, Trans. Amer. Math. Soc. 95 (1960), 466–488. DOI10.1090/S0002-9947-1960-0157984-8
- Byrd K. A., 10.1007/BF01433274, Math. Ann. 186 (1970), 163–170. DOI10.1007/BF01433274
- Garcia J. L., 10.1080/00927878908823714, Comm. Algebra 17 (1989), 73–92. DOI10.1080/00927878908823714
- Golan J. S., 10.1007/BF02771548, Israel J. Math. 8 (1970), 34–38. DOI10.1007/BF02771548
- Golan J. S., 10.1090/S0002-9939-1971-0280551-5, , Proc. Amer. Math. Soc. 28 (1971), no. 2, 337–343. DOI10.1090/S0002-9939-1971-0280551-5
- Golan J. S., 10.1090/S0002-9939-1972-0302700-3, , Proc. Amer. Math. Soc. 31 (1972), no. 2, 401–408. DOI10.1090/S0002-9939-1972-0302700-3
- Koşan M. T., Ha N. T. T., Quynh T. C., 10.1142/S021949881650078X, J. Algebra Appl. 15 (2016), no. 5, 1650078, 11 pp. DOI10.1142/S021949881650078X
- Satyanarayana M., 10.2307/2313615, Amer. Math. Monthly 74 (1967), 1086. DOI10.2307/2313615
- Selvaraj C., Santhakumar S., 10.1142/S0219498817500244, J. Algebra Appl. 16 (2017), no. 2, 1750024, 11 pp. DOI10.1142/S0219498817500244
- Singh S., Srivastava A. K., 10.1016/j.jalgebra.2012.08.012, J. Algebra 371 (2012), 262–275. DOI10.1016/j.jalgebra.2012.08.012
- Tuganbaev A. A., 10.1515/dma-2013-006, Discrete Math. Appl. 23 (2013), no. 1, 115–124. DOI10.1515/dma-2013-006
- Tütüncü D. K., 10.1007/s13373-012-0020-0, Bull. Math. Sci. 2 (2012), 359–363. DOI10.1007/s13373-012-0020-0
- Ware R., 10.1090/S0002-9947-1971-0274511-2, Trans. Amer. Math. Soc. 155 (1971), 233–256. DOI10.1090/S0002-9947-1971-0274511-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.