An asset – liability management stochastic program of a leasing company

Tomáš Rusý; Miloš Kopa

Kybernetika (2018)

  • Volume: 54, Issue: 6, page 1247-1263
  • ISSN: 0023-5954

Abstract

top
We build a multi-stage stochastic program of an asset-liability management problem of a leasing company, analyse model results and present a stress-testing methodology suited for financial applications. At the beginning, the business model of such a company is formulated. We introduce three various risk constraints, namely the chance constraint, the Value-at-Risk constraint and the conditional Value-at-Risk constraint along with the second-order stochastic dominance constraint, which are applied to the model to control risk of the optimal strategy. We also present the structure and the generation process of our scenarios. To capture the evolution of interest rates the Hull-White model is used. Thereafter, results of the model and the effect of the risk constraints on the optimal decisions are thoroughly investigated. In the final part, the performance of the optimal solutions of the problems for unconsidered and unfavourable crisis scenarios is inspected. The methodology of a stress test we used was proposed in such a way that it answers typical questions asked by asset-liability managers.

How to cite

top

Rusý, Tomáš, and Kopa, Miloš. "An asset – liability management stochastic program of a leasing company." Kybernetika 54.6 (2018): 1247-1263. <http://eudml.org/doc/294429>.

@article{Rusý2018,
abstract = {We build a multi-stage stochastic program of an asset-liability management problem of a leasing company, analyse model results and present a stress-testing methodology suited for financial applications. At the beginning, the business model of such a company is formulated. We introduce three various risk constraints, namely the chance constraint, the Value-at-Risk constraint and the conditional Value-at-Risk constraint along with the second-order stochastic dominance constraint, which are applied to the model to control risk of the optimal strategy. We also present the structure and the generation process of our scenarios. To capture the evolution of interest rates the Hull-White model is used. Thereafter, results of the model and the effect of the risk constraints on the optimal decisions are thoroughly investigated. In the final part, the performance of the optimal solutions of the problems for unconsidered and unfavourable crisis scenarios is inspected. The methodology of a stress test we used was proposed in such a way that it answers typical questions asked by asset-liability managers.},
author = {Rusý, Tomáš, Kopa, Miloš},
journal = {Kybernetika},
keywords = {asset-liability management; multi-stage stochastic programming; stress test},
language = {eng},
number = {6},
pages = {1247-1263},
publisher = {Institute of Information Theory and Automation AS CR},
title = {An asset – liability management stochastic program of a leasing company},
url = {http://eudml.org/doc/294429},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Rusý, Tomáš
AU - Kopa, Miloš
TI - An asset – liability management stochastic program of a leasing company
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 6
SP - 1247
EP - 1263
AB - We build a multi-stage stochastic program of an asset-liability management problem of a leasing company, analyse model results and present a stress-testing methodology suited for financial applications. At the beginning, the business model of such a company is formulated. We introduce three various risk constraints, namely the chance constraint, the Value-at-Risk constraint and the conditional Value-at-Risk constraint along with the second-order stochastic dominance constraint, which are applied to the model to control risk of the optimal strategy. We also present the structure and the generation process of our scenarios. To capture the evolution of interest rates the Hull-White model is used. Thereafter, results of the model and the effect of the risk constraints on the optimal decisions are thoroughly investigated. In the final part, the performance of the optimal solutions of the problems for unconsidered and unfavourable crisis scenarios is inspected. The methodology of a stress test we used was proposed in such a way that it answers typical questions asked by asset-liability managers.
LA - eng
KW - asset-liability management; multi-stage stochastic programming; stress test
UR - http://eudml.org/doc/294429
ER -

References

top
  1. Artzner, P., Delbaen, F., Eber, J M., Heath, D., 10.1111/1467-9965.00068, Math. Finance 3 (1999), 203-228. MR1850791DOI10.1111/1467-9965.00068
  2. Brigo, D., Mercurio, F., Interest Rate Models - Theory and Practice with Smile, Inflation and Credit. (Second edition.), Springer Verlag, Berlin 2001. MR1846525
  3. Broeders, D., Chen, A., Koos, B., An Institutional Evaluation of Pension Funds and Life Insurance Companies., De Nederlandsche Bank, 2009. 
  4. Carino, D. R., Kent, T., Myers, D. H., Stacy, C., Sylvanus, M., Turner, A. L., Watanabe, K., Ziemba, W. T., 10.1287/inte.24.1.29, Interfaces 24 (1994), 1, 29-49. DOI10.1287/inte.24.1.29
  5. Chen, R. R., Scott, L., 10.3905/jfi.1993.408090, J. Fixed Incom. 3 (1003),14-31. DOI10.3905/jfi.1993.408090
  6. Cox, J. C., Ingersoll, J. E., Ross, S A., 10.2307/1911242, Econometrica 53 (1985), 385-407. Zbl1274.91447MR0785475DOI10.2307/1911242
  7. Dempster, M. A. H., Ireland, A. M., 10.1007/978-3-642-73489-2_11, In: Data, Expert Knowledge and Decisions, Springer 1988, pp. 116-127. DOI10.1007/978-3-642-73489-2_11
  8. Dentcheva, D., Ruszczynski, A., 10.1137/s1052623402420528, SIAM J. Optim. 14 (2003), 2, 548-566. MR2048155DOI10.1137/s1052623402420528
  9. Dert, C. L., Asset Liability Management for Pension Funds: A Multistage Chance Constrained Programming Approach., PhD Thesis, Erasmus University, Rotterdam 1995. 
  10. Dupačová, J., Kopa, M., , Ann. Oper. Res. 200 (2012), 1, 55-74. MR2989600DOI
  11. Dupačová, J., Kopa, M., 10.1016/j.ejor.2013.06.018, Europ. J. Oper- Res. 234 (2014), 434-441. MR3144732DOI10.1016/j.ejor.2013.06.018
  12. Dupačová, J., 10.1007/bfb0121117, Math. Programm. Study 27 (1986), 133-144. MR0836754DOI10.1007/bfb0121117
  13. Dupačová, J., 10.1007/3-540-35262-7_2, In: Coping with Uncertainty: Modeling and Policy Issues (K. Marti, Y. Ermoliev, M. Makowski, and G. Pflug, eds.), Springer, Berlin 2006, pp. 29-46. MR2278935DOI10.1007/3-540-35262-7_2
  14. Dupačová, J., Kozmík, V., Stress testing for risk-averse stochastic programs., Acta Math. Univ. Comenianae LXXXIV (2015), 2, 205-217. MR3400375
  15. Dupačová, J., Polívka, J., 10.1007/s10479-008-0358-6, Ann. Oper. Res. 165 (2009), 5-28. MR2470980DOI10.1007/s10479-008-0358-6
  16. Geyer, A., Ziemba, W. T., 10.1287/opre.1080.0564, Oper. Res. 56 (2008), 4, 797-810. MR2454099DOI10.1287/opre.1080.0564
  17. Hadar, J., Russell, W. R., Rules for ordering uncertain prospects., Amer. Econom. Rev. 59 (1969), 25-34. 
  18. Hardy, G. H., Littlewood, J. E., Polya, G., 10.1017/s0025557200027455, Cambridge University Press, Cambridge 1934. Zbl0634.26008MR0944909DOI10.1017/s0025557200027455
  19. Hoyland, K., Asset Liability Management for a Life Insurance Company: A Stochastic Programming Approach., PhD Thesis, Norwegian University of Science and Technology, 1998. 
  20. Hull, J., White, A., 10.1093/rfs/3.4.573, Rev. Financ. Stud. 3 (1990), 573-592. DOI10.1093/rfs/3.4.573
  21. Haneveld, W. K. Klein, Streutker, M. H., Vlerk, M. H. van der, 10.1007/s10479-009-0594-4, Ann. Oper. Res. 177 (2010), 1, 47-62. MR2646828DOI10.1007/s10479-009-0594-4
  22. Kopa, M., Moriggia, V., Vitali, S., 10.1007/s10479-016-2387-x, Ann. Oper. Res. 260 (2018), 1-2, 255-291. MR3741562DOI10.1007/s10479-016-2387-x
  23. Kuosmanen, T., 10.1287/mnsc.1040.0284, Management Sci. 50 (2004), 10, 1390-1406. DOI10.1287/mnsc.1040.0284
  24. Kusy, M. I., Ziemba, W. T., 10.1287/opre.34.3.356, Oper. Res. 34 (1986), 356-376. DOI10.1287/opre.34.3.356
  25. Levy, H., 10.1287/mnsc.38.4.555, Management Sci. 38 (1992), 4, 555-593. DOI10.1287/mnsc.38.4.555
  26. Morgan, J. P., Risk Metrics. Technical Document. Fourth Edition., Morgan Guaranty Trust Company, New York 1995. 
  27. Moriggia, V., Kopa, M., Vitali, S., 10.1016/j.omega.2018.08.011, Omega - Int. J. Management Sci. 2018. DOI10.1016/j.omega.2018.08.011
  28. Pflug, G. Ch., 10.1007/978-1-4757-3150-7_15, In: Probabilistic Constrained Optimization: Methodology and Application (S. P. Uryasev, ed.), Kluwer, 1999. MR1819417DOI10.1007/978-1-4757-3150-7_15
  29. Pflug, G. Ch., Pichler, A., Multistage Stochastic Optimization., Springer Series, New York 2014. MR3288310
  30. Pliska, S. R., Jinchun, Ye, 10.1016/j.jbankfin.2006.10.015, J. Banking Finance 31 (2007) 5, 1307-1319. MR2709330DOI10.1016/j.jbankfin.2006.10.015
  31. Post, T., Kopa, M., 10.1287/mnsc.2016.2506, Management Sci. 63 (2017), 10, 3381-3392. DOI10.1287/mnsc.2016.2506
  32. Post, T., Fang, Y., Kopa, M., 10.1287/mnsc.2014.1960, Management Sci. 61 (2015), 7, 1615-1629. MR0668272DOI10.1287/mnsc.2014.1960
  33. Rockafellar, R. T., Uryasev, S., 10.21314/jor.2000.038, J. Risk 2 (2000), 21-41. DOI10.21314/jor.2000.038
  34. Rockafellar, R. T., Uryasev, S., 10.1016/s0378-4266(02)00271-6, J. Banking Finance 26 (2002), 7, 1443-1471. DOI10.1016/s0378-4266(02)00271-6
  35. Telser, L. G., 10.2307/2296146, Rev. Econom. Stud. 23 (1955), 1, 1-16. DOI10.2307/2296146
  36. Vasicek, O., 10.1016/0304-405x(77)90016-2, J. Financ. Econom. 5 (1977), 177-188. DOI10.1016/0304-405x(77)90016-2
  37. Vitali, S., Moriggia, V., Kopa, M., 10.1007/s10287-016-0263-4, Comput. Management Sci. 14 (2017), 1, 135-160. MR3599603DOI10.1007/s10287-016-0263-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.