Sequential convergences in lattices

Ján Jakubík

Mathematica Bohemica (1992)

  • Volume: 117, Issue: 3, page 239-250
  • ISSN: 0862-7959

Abstract

top
The notion of sequential convergence on a lattice is defined in a natural way. In the present paper we investigate the system C o n v L of all sequential convergences on a lattice L .

How to cite

top

Jakubík, Ján. "Sequential convergences in lattices." Mathematica Bohemica 117.3 (1992): 239-250. <http://eudml.org/doc/29443>.

@article{Jakubík1992,
abstract = {The notion of sequential convergence on a lattice is defined in a natural way. In the present paper we investigate the system $Conv L$ of all sequential convergences on a lattice $L$.},
author = {Jakubík, Ján},
journal = {Mathematica Bohemica},
keywords = {sequential convergence; multivalued convergence; lattice; distributive lattice; sequential convergence; multivalued convergence},
language = {eng},
number = {3},
pages = {239-250},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sequential convergences in lattices},
url = {http://eudml.org/doc/29443},
volume = {117},
year = {1992},
}

TY - JOUR
AU - Jakubík, Ján
TI - Sequential convergences in lattices
JO - Mathematica Bohemica
PY - 1992
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 117
IS - 3
SP - 239
EP - 250
AB - The notion of sequential convergence on a lattice is defined in a natural way. In the present paper we investigate the system $Conv L$ of all sequential convergences on a lattice $L$.
LA - eng
KW - sequential convergence; multivalued convergence; lattice; distributive lattice; sequential convergence; multivalued convergence
UR - http://eudml.org/doc/29443
ER -

References

top
  1. G. Birkhoff, Lattice theory, Third edition, (Providence, eds.), 1967. (1967) Zbl0153.02501MR0227053
  2. M. Harminc, Sequential convergences on abelian lattice-ordered groups, Conveгgence structures, 1984. Mathematical Research, Band 24, Akademie-Verlag Berlin (1985), 153-158. (1984) MR0835480
  3. M. Harminc, Sequential convergences on lattice ordered gгoups, Czechoslovak Math. J. 39 (1989), 232-238. (1989) MR0992130
  4. M. Harminc, The cardinality of the system of all sequential convergences on an abelian lattice ordered group, Czechoslovak Math. J. 57 (1987), 533-546. (1987) MR0913986
  5. J. Jakubík, Convergences and complete distributivity of lattice ordered groups, Math. Slovaca 38 (1988), 269-272. (1988) MR0977905
  6. J. Jakubík, Lattice ordered having a largest convergence, Czechoslovak Math. Ј. 39 (1989), 717-729. (1989) MR1018008
  7. J. Jakubík, On some types of kernels of a convergence l-group, Czechoslovak Math. Ј. 39 (1989), 239-247. (1989) MR0992131
  8. J. Jakubík, On summability in convergence l-gгoups, Časopis pěst. mat. 113 (1988), 286-292. (1988) MR0960765
  9. J. Jakubík, Sequential convergences in Boolean algebras, Czechoslovak Math. Ј. 38 (1988), 520-530. (1988) MR0950306
  10. P. Mikusiński, Problems posed at the conference, Proc. Conf. on Convergence, Szczyгk 1979, Katowice (1980), 110-112. (1979) 
  11. E. Pap, Funkcionalna analiza, nizovne konvergenciji, neki principi funkcionalne analize, Novi Sad (1982). (1982) MR0683763

NotesEmbed ?

top

You must be logged in to post comments.