Sequential convergences in lattices

Ján Jakubík

Mathematica Bohemica (1992)

  • Volume: 117, Issue: 3, page 239-250
  • ISSN: 0862-7959

Abstract

top
The notion of sequential convergence on a lattice is defined in a natural way. In the present paper we investigate the system C o n v L of all sequential convergences on a lattice L .

How to cite

top

Jakubík, Ján. "Sequential convergences in lattices." Mathematica Bohemica 117.3 (1992): 239-250. <http://eudml.org/doc/29443>.

@article{Jakubík1992,
abstract = {The notion of sequential convergence on a lattice is defined in a natural way. In the present paper we investigate the system $Conv L$ of all sequential convergences on a lattice $L$.},
author = {Jakubík, Ján},
journal = {Mathematica Bohemica},
keywords = {sequential convergence; multivalued convergence; lattice; distributive lattice; sequential convergence; multivalued convergence},
language = {eng},
number = {3},
pages = {239-250},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sequential convergences in lattices},
url = {http://eudml.org/doc/29443},
volume = {117},
year = {1992},
}

TY - JOUR
AU - Jakubík, Ján
TI - Sequential convergences in lattices
JO - Mathematica Bohemica
PY - 1992
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 117
IS - 3
SP - 239
EP - 250
AB - The notion of sequential convergence on a lattice is defined in a natural way. In the present paper we investigate the system $Conv L$ of all sequential convergences on a lattice $L$.
LA - eng
KW - sequential convergence; multivalued convergence; lattice; distributive lattice; sequential convergence; multivalued convergence
UR - http://eudml.org/doc/29443
ER -

References

top
  1. G. Birkhoff, Lattice theory, Third edition, (Providence, eds.), 1967. (1967) Zbl0153.02501MR0227053
  2. M. Harminc, Sequential convergences on abelian lattice-ordered groups, Conveгgence structures, 1984. Mathematical Research, Band 24, Akademie-Verlag Berlin (1985), 153-158. (1984) MR0835480
  3. M. Harminc, Sequential convergences on lattice ordered gгoups, Czechoslovak Math. J. 39 (1989), 232-238. (1989) MR0992130
  4. M. Harminc, The cardinality of the system of all sequential convergences on an abelian lattice ordered group, Czechoslovak Math. J. 57 (1987), 533-546. (1987) MR0913986
  5. J. Jakubík, Convergences and complete distributivity of lattice ordered groups, Math. Slovaca 38 (1988), 269-272. (1988) MR0977905
  6. J. Jakubík, Lattice ordered having a largest convergence, Czechoslovak Math. Ј. 39 (1989), 717-729. (1989) MR1018008
  7. J. Jakubík, On some types of kernels of a convergence l-group, Czechoslovak Math. Ј. 39 (1989), 239-247. (1989) MR0992131
  8. J. Jakubík, On summability in convergence l-gгoups, Časopis pěst. mat. 113 (1988), 286-292. (1988) MR0960765
  9. J. Jakubík, Sequential convergences in Boolean algebras, Czechoslovak Math. Ј. 38 (1988), 520-530. (1988) MR0950306
  10. P. Mikusiński, Problems posed at the conference, Proc. Conf. on Convergence, Szczyгk 1979, Katowice (1980), 110-112. (1979) 
  11. E. Pap, Funkcionalna analiza, nizovne konvergenciji, neki principi funkcionalne analize, Novi Sad (1982). (1982) MR0683763

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.