Convexities of Gaussian integral means and weighted integral means for analytic functions
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 2, page 525-543
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLi, Haiying, and Liu, Taotao. "Convexities of Gaussian integral means and weighted integral means for analytic functions." Czechoslovak Mathematical Journal 69.2 (2019): 525-543. <http://eudml.org/doc/294430>.
@article{Li2019,
abstract = {We first show that the Gaussian integral means of $f\colon \mathbb \{C\}\rightarrow \mathbb \{C\}$ (with respect to the area measure $\{\rm e\}^\{-\alpha |z|^\{2\}\} \{\rm d\} A(z)$) is a convex function of $r$ on $(0,\infty )$ when $\alpha \le 0$. We then prove that the weighted integral means $A_\{\alpha ,\beta \}(f,r)$ and $L_\{\alpha ,\beta \}(f,r)$ of the mixed area and the mixed length of $f(r\mathbb \{D\})$ and $\partial f(r\mathbb \{D\})$, respectively, also have the property of convexity in the case of $\alpha \le 0$. Finally, we show with examples that the range $\alpha \le 0$ is the best possible.},
author = {Li, Haiying, Liu, Taotao},
journal = {Czechoslovak Mathematical Journal},
keywords = {Gaussian integral means; weighted integral means; analytic function; convexity},
language = {eng},
number = {2},
pages = {525-543},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Convexities of Gaussian integral means and weighted integral means for analytic functions},
url = {http://eudml.org/doc/294430},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Li, Haiying
AU - Liu, Taotao
TI - Convexities of Gaussian integral means and weighted integral means for analytic functions
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 525
EP - 543
AB - We first show that the Gaussian integral means of $f\colon \mathbb {C}\rightarrow \mathbb {C}$ (with respect to the area measure ${\rm e}^{-\alpha |z|^{2}} {\rm d} A(z)$) is a convex function of $r$ on $(0,\infty )$ when $\alpha \le 0$. We then prove that the weighted integral means $A_{\alpha ,\beta }(f,r)$ and $L_{\alpha ,\beta }(f,r)$ of the mixed area and the mixed length of $f(r\mathbb {D})$ and $\partial f(r\mathbb {D})$, respectively, also have the property of convexity in the case of $\alpha \le 0$. Finally, we show with examples that the range $\alpha \le 0$ is the best possible.
LA - eng
KW - Gaussian integral means; weighted integral means; analytic function; convexity
UR - http://eudml.org/doc/294430
ER -
References
top- Al-Abbadi, M. H., Darus, M., Angular estimates for certain analytic univalent functions, Int. J. Open Problems Complex Analysis 2 (2010), 212-220. (2010)
- Cho, H. R., Zhu, K., 10.1016/j.jfa.2012.08.003, J. Funct. Anal. 263 (2012), 2483-2506. (2012) Zbl1264.46017MR2964691DOI10.1016/j.jfa.2012.08.003
- Duren, P. L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer, New York (1983). (1983) Zbl0514.30001MR0708494
- Nehari, Z., 10.1090/S0002-9904-1949-09241-8, Bull. Am. Math. Soc. 55 (1949), 545-551. (1949) Zbl0035.05104MR0029999DOI10.1090/S0002-9904-1949-09241-8
- Nunokawa, M., On some angular estimates of analytic functions, Math. Jap. 41 (1995), 447-452. (1995) Zbl0822.30014MR1326978
- Peng, W., Wang, C., Zhu, K., 10.1080/17476933.2016.1218857, Complex Var. Elliptic Equ. 62 (2017), 307-317. (2017) Zbl1376.30041MR3598979DOI10.1080/17476933.2016.1218857
- Wang, C., Xiao, J., 10.1007/s11785-013-0339-x, Complex Anal. Oper. Theory 8 (2014), 1487-1505 addendum ibid. 10 495-503 2016. (2014) Zbl1303.30024MR3261708DOI10.1007/s11785-013-0339-x
- Wang, C., Xiao, J., Zhu, K., 10.1017/S1446788714000457, J. Aust. Math. Soc. 98 (2015), 117-128. (2015) Zbl1316.30050MR3294311DOI10.1017/S1446788714000457
- Wang, C., Zhu, K., 10.7146/math.scand.a-16643, Math. Scand. 114 (2014), 149-160. (2014) Zbl1294.30104MR3178110DOI10.7146/math.scand.a-16643
- Xiao, J., Xu, W., 10.4208/ata.2014.v30.n1.1, Anal. Theory Appl. 30 (2014), 1-19. (2014) Zbl1313.32024MR3197626DOI10.4208/ata.2014.v30.n1.1
- Xiao, J., Zhu, K., 10.1090/S0002-9939-2010-10797-9, Proc. Am. Math. Soc. 139 (2011), 1455-1465. (2011) Zbl1215.32002MR2748439DOI10.1090/S0002-9939-2010-10797-9
- Zhu, K., 10.1007/978-1-4419-8801-0, Graduate Texts in Mathematics 263, Springer, New York (2012). (2012) Zbl1262.30003MR2934601DOI10.1007/978-1-4419-8801-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.