Boundedness of Littlewood-Paley operators relative to non-isotropic dilations
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 2, page 337-351
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSato, Shuichi. "Boundedness of Littlewood-Paley operators relative to non-isotropic dilations." Czechoslovak Mathematical Journal 69.2 (2019): 337-351. <http://eudml.org/doc/294433>.
@article{Sato2019,
abstract = {We consider Littlewood-Paley functions associated with a non-isotropic dilation group on $\mathbb \{R\}^n$. We prove that certain Littlewood-Paley functions defined by kernels with no regularity concerning smoothness are bounded on weighted $L^p$ spaces, $1<p<\infty $, with weights of the Muckenhoupt class. This, in particular, generalizes a result of N. Rivière (1971).},
author = {Sato, Shuichi},
journal = {Czechoslovak Mathematical Journal},
keywords = {Littlewood-Paley function; non-isotropic dilation},
language = {eng},
number = {2},
pages = {337-351},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundedness of Littlewood-Paley operators relative to non-isotropic dilations},
url = {http://eudml.org/doc/294433},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Sato, Shuichi
TI - Boundedness of Littlewood-Paley operators relative to non-isotropic dilations
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 337
EP - 351
AB - We consider Littlewood-Paley functions associated with a non-isotropic dilation group on $\mathbb {R}^n$. We prove that certain Littlewood-Paley functions defined by kernels with no regularity concerning smoothness are bounded on weighted $L^p$ spaces, $1<p<\infty $, with weights of the Muckenhoupt class. This, in particular, generalizes a result of N. Rivière (1971).
LA - eng
KW - Littlewood-Paley function; non-isotropic dilation
UR - http://eudml.org/doc/294433
ER -
References
top- Benedek, A., Calderón, A. P., Panzone, R., 10.1073/pnas.48.3.356, Proc. Natl. Acad. Sci. USA 48 (1962), 356-365. (1962) Zbl0103.33402MR0133653DOI10.1073/pnas.48.3.356
- Calderón, A. P., 10.4064/sm-57-3-297-306, Stud. Math. 57 (1976), 297-306. (1976) Zbl0341.44007MR0442579DOI10.4064/sm-57-3-297-306
- Calderón, A. P., Torchinsky, A., 10.1016/0001-8708(75)90099-7, Adv. Math. 16 (1975), 1-64. (1975) Zbl0315.46037MR0417687DOI10.1016/0001-8708(75)90099-7
- Capri, O. N., On an inequality in the theory of parabolic spaces, Rev. Unión Mat. Argent. 32 (1985), 17-28. (1985) Zbl0643.42013MR0873913
- Cheng, L. C., 10.1090/S0002-9939-07-08917-4, Proc. Am. Math. Soc. 135 (2007), 3241-3247. (2007) Zbl1124.42013MR2322755DOI10.1090/S0002-9939-07-08917-4
- Ding, Y., Sato, S., 10.1515/forum-2014-0058, Forum Math. 28 (2016), 43-55. (2016) Zbl1332.42007MR3441105DOI10.1515/forum-2014-0058
- Duoandikoetxea, J., 10.2307/2154381, Trans. Am. Math. Soc. 336 (1993), 869-880. (1993) Zbl0770.42011MR1089418DOI10.2307/2154381
- Duoandikoetxea, J., 10.1007/s13163-012-0106-y, Rev. Mat. Complut. 26 (2013), 535-548. (2013) Zbl1334.42040MR3068610DOI10.1007/s13163-012-0106-y
- Duoandikoetxea, J., Francia, J. L. Rubio de, 10.1007/BF01388746, Invent. Math. 84 (1986), 541-561. (1986) Zbl0568.42012MR0837527DOI10.1007/BF01388746
- Duoandikoetxea, J., Seijo, E., 10.4064/sm149-3-2, Stud. Math. 149 (2002), 239-252. (2002) Zbl1015.42016MR1890732DOI10.4064/sm149-3-2
- Fan, D., Sato, S., 10.2969/jmsj/1191593909, J. Math. Soc. Japan 54 (2002), 565-585. (2002) Zbl1029.42010MR1900957DOI10.2969/jmsj/1191593909
- Garcia-Cuerva, J., Francia, J. L. Rubio de, 10.1016/s0304-0208(08)x7154-3, North-Holland Mathematics Studies 116, Notas de Matemática 104, North-Holland, Amsterdam (1985). (1985) Zbl0578.46046MR0807149DOI10.1016/s0304-0208(08)x7154-3
- Hörmander, L., 10.1007/BF02547187, Acta Math. 104 (1960), 93-140. (1960) Zbl0093.11402MR0121655DOI10.1007/BF02547187
- Rivière, N., 10.1007/BF02383650, Ark. Mat. 9 (1971), 243-278. (1971) Zbl0244.42024MR0440268DOI10.1007/BF02383650
- Francia, J. L. Rubio de, 10.2307/2374284, Am. J. Math. 106 (1984), 533-547. (1984) Zbl0558.42012MR0745140DOI10.2307/2374284
- Sato, S., 10.1017/S0004972700032172, Bull. Aust. Math. Soc. 58 (1998), 199-211. (1998) Zbl0914.42012MR1642027DOI10.1017/S0004972700032172
- Sato, S., 10.1007/s00020-008-1631-4, Integral Equations Oper. Theory 62 (2008), 429-440. (2008) Zbl1166.42009MR2461129DOI10.1007/s00020-008-1631-4
- Sato, S., 10.1017/S1446788708000773, J. Aust. Math. Soc. 86 (2009), 413-430. (2009) Zbl1182.42019MR2529333DOI10.1017/S1446788708000773
- Sato, S., 10.1007/s00020-016-2333-y, Integral Equations Oper. Theory 87 (2017), 15-44. (2017) Zbl1364.42025MR3609237DOI10.1007/s00020-016-2333-y
- Stein, E. M., 10.1515/9781400883882, Princeton Mathematical Series 30, Princeton University Press, Princeton (1970). (1970) Zbl0207.13501MR0290095DOI10.1515/9781400883882
- Stein, E. M., Wainger, S., 10.1090/S0002-9904-1978-14554-6, Bull. Am. Math. Soc. 84 (1978), 1239-1295. (1978) Zbl0393.42010MR0508453DOI10.1090/S0002-9904-1978-14554-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.