Boundedness of Littlewood-Paley operators relative to non-isotropic dilations

Shuichi Sato

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 2, page 337-351
  • ISSN: 0011-4642

Abstract

top
We consider Littlewood-Paley functions associated with a non-isotropic dilation group on n . We prove that certain Littlewood-Paley functions defined by kernels with no regularity concerning smoothness are bounded on weighted L p spaces, 1 < p < , with weights of the Muckenhoupt class. This, in particular, generalizes a result of N. Rivière (1971).

How to cite

top

Sato, Shuichi. "Boundedness of Littlewood-Paley operators relative to non-isotropic dilations." Czechoslovak Mathematical Journal 69.2 (2019): 337-351. <http://eudml.org/doc/294433>.

@article{Sato2019,
abstract = {We consider Littlewood-Paley functions associated with a non-isotropic dilation group on $\mathbb \{R\}^n$. We prove that certain Littlewood-Paley functions defined by kernels with no regularity concerning smoothness are bounded on weighted $L^p$ spaces, $1<p<\infty $, with weights of the Muckenhoupt class. This, in particular, generalizes a result of N. Rivière (1971).},
author = {Sato, Shuichi},
journal = {Czechoslovak Mathematical Journal},
keywords = {Littlewood-Paley function; non-isotropic dilation},
language = {eng},
number = {2},
pages = {337-351},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundedness of Littlewood-Paley operators relative to non-isotropic dilations},
url = {http://eudml.org/doc/294433},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Sato, Shuichi
TI - Boundedness of Littlewood-Paley operators relative to non-isotropic dilations
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 337
EP - 351
AB - We consider Littlewood-Paley functions associated with a non-isotropic dilation group on $\mathbb {R}^n$. We prove that certain Littlewood-Paley functions defined by kernels with no regularity concerning smoothness are bounded on weighted $L^p$ spaces, $1<p<\infty $, with weights of the Muckenhoupt class. This, in particular, generalizes a result of N. Rivière (1971).
LA - eng
KW - Littlewood-Paley function; non-isotropic dilation
UR - http://eudml.org/doc/294433
ER -

References

top
  1. Benedek, A., Calderón, A. P., Panzone, R., 10.1073/pnas.48.3.356, Proc. Natl. Acad. Sci. USA 48 (1962), 356-365. (1962) Zbl0103.33402MR0133653DOI10.1073/pnas.48.3.356
  2. Calderón, A. P., 10.4064/sm-57-3-297-306, Stud. Math. 57 (1976), 297-306. (1976) Zbl0341.44007MR0442579DOI10.4064/sm-57-3-297-306
  3. Calderón, A. P., Torchinsky, A., 10.1016/0001-8708(75)90099-7, Adv. Math. 16 (1975), 1-64. (1975) Zbl0315.46037MR0417687DOI10.1016/0001-8708(75)90099-7
  4. Capri, O. N., On an inequality in the theory of parabolic H p spaces, Rev. Unión Mat. Argent. 32 (1985), 17-28. (1985) Zbl0643.42013MR0873913
  5. Cheng, L. C., 10.1090/S0002-9939-07-08917-4, Proc. Am. Math. Soc. 135 (2007), 3241-3247. (2007) Zbl1124.42013MR2322755DOI10.1090/S0002-9939-07-08917-4
  6. Ding, Y., Sato, S., 10.1515/forum-2014-0058, Forum Math. 28 (2016), 43-55. (2016) Zbl1332.42007MR3441105DOI10.1515/forum-2014-0058
  7. Duoandikoetxea, J., 10.2307/2154381, Trans. Am. Math. Soc. 336 (1993), 869-880. (1993) Zbl0770.42011MR1089418DOI10.2307/2154381
  8. Duoandikoetxea, J., 10.1007/s13163-012-0106-y, Rev. Mat. Complut. 26 (2013), 535-548. (2013) Zbl1334.42040MR3068610DOI10.1007/s13163-012-0106-y
  9. Duoandikoetxea, J., Francia, J. L. Rubio de, 10.1007/BF01388746, Invent. Math. 84 (1986), 541-561. (1986) Zbl0568.42012MR0837527DOI10.1007/BF01388746
  10. Duoandikoetxea, J., Seijo, E., 10.4064/sm149-3-2, Stud. Math. 149 (2002), 239-252. (2002) Zbl1015.42016MR1890732DOI10.4064/sm149-3-2
  11. Fan, D., Sato, S., 10.2969/jmsj/1191593909, J. Math. Soc. Japan 54 (2002), 565-585. (2002) Zbl1029.42010MR1900957DOI10.2969/jmsj/1191593909
  12. Garcia-Cuerva, J., Francia, J. L. Rubio de, 10.1016/s0304-0208(08)x7154-3, North-Holland Mathematics Studies 116, Notas de Matemática 104, North-Holland, Amsterdam (1985). (1985) Zbl0578.46046MR0807149DOI10.1016/s0304-0208(08)x7154-3
  13. Hörmander, L., 10.1007/BF02547187, Acta Math. 104 (1960), 93-140. (1960) Zbl0093.11402MR0121655DOI10.1007/BF02547187
  14. Rivière, N., 10.1007/BF02383650, Ark. Mat. 9 (1971), 243-278. (1971) Zbl0244.42024MR0440268DOI10.1007/BF02383650
  15. Francia, J. L. Rubio de, 10.2307/2374284, Am. J. Math. 106 (1984), 533-547. (1984) Zbl0558.42012MR0745140DOI10.2307/2374284
  16. Sato, S., 10.1017/S0004972700032172, Bull. Aust. Math. Soc. 58 (1998), 199-211. (1998) Zbl0914.42012MR1642027DOI10.1017/S0004972700032172
  17. Sato, S., 10.1007/s00020-008-1631-4, Integral Equations Oper. Theory 62 (2008), 429-440. (2008) Zbl1166.42009MR2461129DOI10.1007/s00020-008-1631-4
  18. Sato, S., 10.1017/S1446788708000773, J. Aust. Math. Soc. 86 (2009), 413-430. (2009) Zbl1182.42019MR2529333DOI10.1017/S1446788708000773
  19. Sato, S., 10.1007/s00020-016-2333-y, Integral Equations Oper. Theory 87 (2017), 15-44. (2017) Zbl1364.42025MR3609237DOI10.1007/s00020-016-2333-y
  20. Stein, E. M., 10.1515/9781400883882, Princeton Mathematical Series 30, Princeton University Press, Princeton (1970). (1970) Zbl0207.13501MR0290095DOI10.1515/9781400883882
  21. Stein, E. M., Wainger, S., 10.1090/S0002-9904-1978-14554-6, Bull. Am. Math. Soc. 84 (1978), 1239-1295. (1978) Zbl0393.42010MR0508453DOI10.1090/S0002-9904-1978-14554-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.