Remarks on balanced norm error estimates for systems of reaction-diffusion equations
Applications of Mathematics (2018)
- Volume: 63, Issue: 3, page 273-279
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topRoos, Hans-Goerg. "Remarks on balanced norm error estimates for systems of reaction-diffusion equations." Applications of Mathematics 63.3 (2018): 273-279. <http://eudml.org/doc/294436>.
@article{Roos2018,
abstract = {Error estimates of finite element methods for reaction-diffusion problems are often realized in the related energy norm. In the singularly perturbed case, however, this norm is not adequate. A different scaling of the $H^1$ seminorm leads to a balanced norm which reflects the layer behavior correctly. We discuss the difficulties which arise for systems of reaction-diffusion problems.},
author = {Roos, Hans-Goerg},
journal = {Applications of Mathematics},
keywords = {singular perturbation; finite element method; layer-adapted mesh; balanced norm},
language = {eng},
number = {3},
pages = {273-279},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Remarks on balanced norm error estimates for systems of reaction-diffusion equations},
url = {http://eudml.org/doc/294436},
volume = {63},
year = {2018},
}
TY - JOUR
AU - Roos, Hans-Goerg
TI - Remarks on balanced norm error estimates for systems of reaction-diffusion equations
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 3
SP - 273
EP - 279
AB - Error estimates of finite element methods for reaction-diffusion problems are often realized in the related energy norm. In the singularly perturbed case, however, this norm is not adequate. A different scaling of the $H^1$ seminorm leads to a balanced norm which reflects the layer behavior correctly. We discuss the difficulties which arise for systems of reaction-diffusion problems.
LA - eng
KW - singular perturbation; finite element method; layer-adapted mesh; balanced norm
UR - http://eudml.org/doc/294436
ER -
References
top- Crouzeix, M., Thomée, V., 10.2307/2007825, Math. Comput. 48 (1987), 521-532. (1987) Zbl0637.41034MR0878688DOI10.2307/2007825
- Faustmann, M., Melenk, J. M., 10.1016/j.camwa.2017.03.015, Comput. Math. Appl. 74 (2017), 1576-1589. (2017) MR3706618DOI10.1016/j.camwa.2017.03.015
- Franz, S., Roos, H.-G., 10.1007/s10092-013-0093-5, Calcolo 51 (2014), 423-440. (2014) Zbl1314.65141MR3252075DOI10.1007/s10092-013-0093-5
- Franz, S., Roos, H.-G., 10.1016/j.camwa.2016.05.001, Comput. Math. Appl. 72 (2016), 233-247. (2016) MR3506572DOI10.1016/j.camwa.2016.05.001
- Lin, R., Stynes, M., 10.1137/110837784, SIAM J. Numer. Anal. 50 (2012), 2729-2743. (2012) Zbl1260.65103MR3022240DOI10.1137/110837784
- Lin, R., Stynes, M., 10.1007/s11075-015-9969-6, Numer. Algorithms 70 (2015), 691-707. (2015) Zbl1333.65084MR3428676DOI10.1007/s11075-015-9969-6
- Linß, T., 10.1007/s11075-008-9228-1, Numer. Algorithms 50 (2009), 283-291. (2009) Zbl1163.65054MR2487239DOI10.1007/s11075-008-9228-1
- Melenk, J. M., Xenophontos, C., 10.1007/s10092-015-0139-y, Calcolo 53 (2016), 105-132. (2016) Zbl1336.65148MR3461383DOI10.1007/s10092-015-0139-y
- Oswald, P., 10.1007/978-1-4614-4565-4_24, Recent Advances in Harmonic Analysis and Applications D. Bilyk et al. Springer Proc. Math. Stat. 25, Springer, New York (2013), 303-316. (2013) Zbl1273.65180MR3066894DOI10.1007/978-1-4614-4565-4_24
- Roos, H.-G., 10.18255/1818-1015-2016-3-357-363, Model. Anal. Inf. Sist. 23 (2016), 357-363. (2016) MR3520858DOI10.18255/1818-1015-2016-3-357-363
- Roos, H.-G., 10.1007/978-3-319-67202-1_1, Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2016 Z. Huang et al. Lecture Notes in Computational Science and Engineering 120, Springer, Cham (2017), 1-18. (2017) MR3772487DOI10.1007/978-3-319-67202-1_1
- Roos, H.-G., Schopf, M., 10.1002/zamm.201300226, ZAMM, Z. Angew. Math. Mech. 95 (2015), 551-565. (2015) Zbl1326.65163MR3358551DOI10.1002/zamm.201300226
- Roos, H.-G., Stynes, M., Tobiska, L., 10.1007/978-3-540-34467-4, Springer Series in Computational Mathematics 24, Springer, Berlin (2008). (2008) Zbl1155.65087MR2454024DOI10.1007/978-3-540-34467-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.