Remarks on balanced norm error estimates for systems of reaction-diffusion equations

Hans-Goerg Roos

Applications of Mathematics (2018)

  • Volume: 63, Issue: 3, page 273-279
  • ISSN: 0862-7940

Abstract

top
Error estimates of finite element methods for reaction-diffusion problems are often realized in the related energy norm. In the singularly perturbed case, however, this norm is not adequate. A different scaling of the H 1 seminorm leads to a balanced norm which reflects the layer behavior correctly. We discuss the difficulties which arise for systems of reaction-diffusion problems.

How to cite

top

Roos, Hans-Goerg. "Remarks on balanced norm error estimates for systems of reaction-diffusion equations." Applications of Mathematics 63.3 (2018): 273-279. <http://eudml.org/doc/294436>.

@article{Roos2018,
abstract = {Error estimates of finite element methods for reaction-diffusion problems are often realized in the related energy norm. In the singularly perturbed case, however, this norm is not adequate. A different scaling of the $H^1$ seminorm leads to a balanced norm which reflects the layer behavior correctly. We discuss the difficulties which arise for systems of reaction-diffusion problems.},
author = {Roos, Hans-Goerg},
journal = {Applications of Mathematics},
keywords = {singular perturbation; finite element method; layer-adapted mesh; balanced norm},
language = {eng},
number = {3},
pages = {273-279},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Remarks on balanced norm error estimates for systems of reaction-diffusion equations},
url = {http://eudml.org/doc/294436},
volume = {63},
year = {2018},
}

TY - JOUR
AU - Roos, Hans-Goerg
TI - Remarks on balanced norm error estimates for systems of reaction-diffusion equations
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 3
SP - 273
EP - 279
AB - Error estimates of finite element methods for reaction-diffusion problems are often realized in the related energy norm. In the singularly perturbed case, however, this norm is not adequate. A different scaling of the $H^1$ seminorm leads to a balanced norm which reflects the layer behavior correctly. We discuss the difficulties which arise for systems of reaction-diffusion problems.
LA - eng
KW - singular perturbation; finite element method; layer-adapted mesh; balanced norm
UR - http://eudml.org/doc/294436
ER -

References

top
  1. Crouzeix, M., Thomée, V., 10.2307/2007825, Math. Comput. 48 (1987), 521-532. (1987) Zbl0637.41034MR0878688DOI10.2307/2007825
  2. Faustmann, M., Melenk, J. M., 10.1016/j.camwa.2017.03.015, Comput. Math. Appl. 74 (2017), 1576-1589. (2017) MR3706618DOI10.1016/j.camwa.2017.03.015
  3. Franz, S., Roos, H.-G., 10.1007/s10092-013-0093-5, Calcolo 51 (2014), 423-440. (2014) Zbl1314.65141MR3252075DOI10.1007/s10092-013-0093-5
  4. Franz, S., Roos, H.-G., 10.1016/j.camwa.2016.05.001, Comput. Math. Appl. 72 (2016), 233-247. (2016) MR3506572DOI10.1016/j.camwa.2016.05.001
  5. Lin, R., Stynes, M., 10.1137/110837784, SIAM J. Numer. Anal. 50 (2012), 2729-2743. (2012) Zbl1260.65103MR3022240DOI10.1137/110837784
  6. Lin, R., Stynes, M., 10.1007/s11075-015-9969-6, Numer. Algorithms 70 (2015), 691-707. (2015) Zbl1333.65084MR3428676DOI10.1007/s11075-015-9969-6
  7. Linß, T., 10.1007/s11075-008-9228-1, Numer. Algorithms 50 (2009), 283-291. (2009) Zbl1163.65054MR2487239DOI10.1007/s11075-008-9228-1
  8. Melenk, J. M., Xenophontos, C., 10.1007/s10092-015-0139-y, Calcolo 53 (2016), 105-132. (2016) Zbl1336.65148MR3461383DOI10.1007/s10092-015-0139-y
  9. Oswald, P., 10.1007/978-1-4614-4565-4_24, Recent Advances in Harmonic Analysis and Applications D. Bilyk et al. Springer Proc. Math. Stat. 25, Springer, New York (2013), 303-316. (2013) Zbl1273.65180MR3066894DOI10.1007/978-1-4614-4565-4_24
  10. Roos, H.-G., 10.18255/1818-1015-2016-3-357-363, Model. Anal. Inf. Sist. 23 (2016), 357-363. (2016) MR3520858DOI10.18255/1818-1015-2016-3-357-363
  11. Roos, H.-G., 10.1007/978-3-319-67202-1_1, Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2016 Z. Huang et al. Lecture Notes in Computational Science and Engineering 120, Springer, Cham (2017), 1-18. (2017) MR3772487DOI10.1007/978-3-319-67202-1_1
  12. Roos, H.-G., Schopf, M., 10.1002/zamm.201300226, ZAMM, Z. Angew. Math. Mech. 95 (2015), 551-565. (2015) Zbl1326.65163MR3358551DOI10.1002/zamm.201300226
  13. Roos, H.-G., Stynes, M., Tobiska, L., 10.1007/978-3-540-34467-4, Springer Series in Computational Mathematics 24, Springer, Berlin (2008). (2008) Zbl1155.65087MR2454024DOI10.1007/978-3-540-34467-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.