Abstract Korovkin type theorems on modular spaces by 𝒜 -summability

Emre Taş

Mathematica Bohemica (2018)

  • Volume: 143, Issue: 4, page 419-430
  • ISSN: 0862-7959

Abstract

top
Our aim is to change classical test functions of Korovkin theorem on modular spaces by using 𝒜 -summability.

How to cite

top

Taş, Emre. "Abstract Korovkin type theorems on modular spaces by $\mathcal {A}$-summability." Mathematica Bohemica 143.4 (2018): 419-430. <http://eudml.org/doc/294437>.

@article{Taş2018,
abstract = {Our aim is to change classical test functions of Korovkin theorem on modular spaces by using $\mathcal \{A\}$-summability.},
author = {Taş, Emre},
journal = {Mathematica Bohemica},
keywords = {$\mathcal \{A\}$-summability; modular space; abstract Korovkin theory},
language = {eng},
number = {4},
pages = {419-430},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Abstract Korovkin type theorems on modular spaces by $\mathcal \{A\}$-summability},
url = {http://eudml.org/doc/294437},
volume = {143},
year = {2018},
}

TY - JOUR
AU - Taş, Emre
TI - Abstract Korovkin type theorems on modular spaces by $\mathcal {A}$-summability
JO - Mathematica Bohemica
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 143
IS - 4
SP - 419
EP - 430
AB - Our aim is to change classical test functions of Korovkin theorem on modular spaces by using $\mathcal {A}$-summability.
LA - eng
KW - $\mathcal {A}$-summability; modular space; abstract Korovkin theory
UR - http://eudml.org/doc/294437
ER -

References

top
  1. Altomare, F., Korovkin-type theorems and approximation by positive linear operators, Surv. Approx. Theory 5 (2010), 92-164. (2010) Zbl1285.41012MR2721174
  2. Altomare, F., Diomede, S., 10.1007/BF02844431, Rend. Circ. Mat. Palermo II. Ser. 50 (2001), 547-568. (2001) Zbl1011.46020MR1871614DOI10.1007/BF02844431
  3. Atlihan, Ö. G., Taş, E., 10.1007/s10474-015-0476-y, Acta Math. Hung. 145 (2015), 360-368. (2015) Zbl1363.41022MR3325796DOI10.1007/s10474-015-0476-y
  4. Bardaro, C., Boccuto, A., Dimitriou, X., Mantellini, I., 10.2478/s11533-013-0288-7, Cent. Eur. J. Math. 11 (2013), 1774-1784. (2013) Zbl1283.41018MR3080236DOI10.2478/s11533-013-0288-7
  5. Bardaro, C., Boccuto, A., Dimitriou, X., Mantellini, I., 10.1080/00036811.2012.738480, Appl. Anal. 92 (2013), 2404-2423. (2013) Zbl1286.41003MR3169171DOI10.1080/00036811.2012.738480
  6. Bardaro, C., Boccuto, A., Demirci, K., Mantellini, I., Orhan, S., 10.1155/2015/160401, J. Funct. Spaces 2015 (2015), Article ID 160401, 11 pages. (2015) Zbl1327.46006MR3310460DOI10.1155/2015/160401
  7. Bardaro, C., Boccuto, A., Demirci, K., Mantellini, I., Orhan, S., 10.1007/s00025-015-0433-7, Result. Math. 68 (2015), 271-291. (2015) Zbl1338.40009MR3407558DOI10.1007/s00025-015-0433-7
  8. Bardaro, C., Mantellini, I., Korovkin theorem in modular spaces, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 47 (2007), 239-253. (2007) Zbl1181.41035MR2377960
  9. Bardaro, C., Mantellini, I., 10.7153/jmi-02-22, J. Math. Inequal. 2 (2008), 247-259. (2008) Zbl1152.41308MR2426828DOI10.7153/jmi-02-22
  10. Bardaro, C., Mantellini, I., 10.1155/2009/863153, J. Funct. Spaces Appl. 7 (2009), 105-120. (2009) Zbl1195.41021MR2541228DOI10.1155/2009/863153
  11. Bardaro, C., Musielak, J., Vinti, G., Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications 9. Walter de Gruyter, Berlin (2003). (2003) Zbl1030.47003MR1994699
  12. Bell, H. T., 10.2307/2038948, Proc. Am. Math. Soc. 38 (1973), 548-552. (1973) Zbl0259.40003MR0310489DOI10.2307/2038948
  13. Boccuto, A., Dimitriou, X., 10.1007/s10114-013-1443-6, Acta Math. Sin., Engl. Ser. 29 (2013), 1055-1066. (2013) Zbl1268.41018MR3048228DOI10.1007/s10114-013-1443-6
  14. Demirci, K., Orhan, S., 10.1007/s00025-016-0548-5, Result. Math. 71 (2017), 1167-1184. (2017) MR3648467DOI10.1007/s00025-016-0548-5
  15. Karakuş, S., Demirci, K., Matrix summability and Korovkin type approximation theorem on modular spaces, Acta Math. Univ. Comen., New Ser. 79 (2010), 281-292. (2010) Zbl1240.41065MR2745177
  16. Karakuş, S., Demirci, K., Duman, O., 10.1007/s11117-009-0020-9, Positivity 14 (2010), 321-334. (2010) Zbl1193.41014MR2657637DOI10.1007/s11117-009-0020-9
  17. Musielak, J., 10.1007/BFb0072210, Lecture Notes in Mathematics 1034. Springer, Berlin (1983). (1983) Zbl0557.46020MR0724434DOI10.1007/BFb0072210
  18. Musielak, J., Orlicz, W., 10.4064/sm-18-1-49-65, Studia Math. 18 (1959), 49-65. (1959) Zbl0086.08901MR0101487DOI10.4064/sm-18-1-49-65
  19. Nakano, H., Modulared Semi-Ordered Linear Spaces, Tokyo Math. Book Series, Vol. 1. Maruzen, Tokyo (1950). (1950) Zbl0041.23401MR0038565
  20. Orhan, S., Demirci, K., 10.1007/s11117-013-0269-x, Positivity 18 (2014), 669-686. (2014) Zbl1308.41024MR3275359DOI10.1007/s11117-013-0269-x
  21. Sakaoğlu, I., Orhan, C., 10.1016/j.na.2013.03.010, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 86 (2013), 89-94. (2013) Zbl1283.41017MR3053558DOI10.1016/j.na.2013.03.010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.