Note on a conjecture for the sum of signless Laplacian eigenvalues

Xiaodan Chen; Guoliang Hao; Dequan Jin; Jingjian Li

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 3, page 601-610
  • ISSN: 0011-4642

Abstract

top
For a simple graph G on n vertices and an integer k with 1 k n , denote by 𝒮 k + ( G ) the sum of k largest signless Laplacian eigenvalues of G . It was conjectured that 𝒮 k + ( G ) e ( G ) + k + 1 2 , where e ( G ) is the number of edges of G . This conjecture has been proved to be true for all graphs when k { 1 , 2 , n - 1 , n } , and for trees, unicyclic graphs, bicyclic graphs and regular graphs (for all k ). In this note, this conjecture is proved to be true for all graphs when k = n - 2 , and for some new classes of graphs.

How to cite

top

Chen, Xiaodan, et al. "Note on a conjecture for the sum of signless Laplacian eigenvalues." Czechoslovak Mathematical Journal 68.3 (2018): 601-610. <http://eudml.org/doc/294439>.

@article{Chen2018,
abstract = {For a simple graph $G$ on $n$ vertices and an integer $k$ with $1\le k\le n$, denote by $\mathcal \{S\}_k^+(G)$ the sum of $k$ largest signless Laplacian eigenvalues of $G$. It was conjectured that $\mathcal \{S\}_k^+(G)\le e(G)+\{k+1 \atopwithdelims ()2\}$, where $e(G)$ is the number of edges of $G$. This conjecture has been proved to be true for all graphs when $k\in \lbrace 1,2,n-1,n\rbrace $, and for trees, unicyclic graphs, bicyclic graphs and regular graphs (for all $k$). In this note, this conjecture is proved to be true for all graphs when $k=n-2$, and for some new classes of graphs.},
author = {Chen, Xiaodan, Hao, Guoliang, Jin, Dequan, Li, Jingjian},
journal = {Czechoslovak Mathematical Journal},
keywords = {sum of signless Laplacian eigenvalues; upper bound; clique number; girth},
language = {eng},
number = {3},
pages = {601-610},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Note on a conjecture for the sum of signless Laplacian eigenvalues},
url = {http://eudml.org/doc/294439},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Chen, Xiaodan
AU - Hao, Guoliang
AU - Jin, Dequan
AU - Li, Jingjian
TI - Note on a conjecture for the sum of signless Laplacian eigenvalues
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 601
EP - 610
AB - For a simple graph $G$ on $n$ vertices and an integer $k$ with $1\le k\le n$, denote by $\mathcal {S}_k^+(G)$ the sum of $k$ largest signless Laplacian eigenvalues of $G$. It was conjectured that $\mathcal {S}_k^+(G)\le e(G)+{k+1 \atopwithdelims ()2}$, where $e(G)$ is the number of edges of $G$. This conjecture has been proved to be true for all graphs when $k\in \lbrace 1,2,n-1,n\rbrace $, and for trees, unicyclic graphs, bicyclic graphs and regular graphs (for all $k$). In this note, this conjecture is proved to be true for all graphs when $k=n-2$, and for some new classes of graphs.
LA - eng
KW - sum of signless Laplacian eigenvalues; upper bound; clique number; girth
UR - http://eudml.org/doc/294439
ER -

References

top
  1. Ashraf, F., Omidi, G. R., Tayfeh-Rezaie, B., 10.1016/j.laa.2013.01.023, Linear Algebra Appl. 438 (2013), 4539-4546. (2013) Zbl1282.05087MR3034549DOI10.1016/j.laa.2013.01.023
  2. Bai, H., 10.1090/S0002-9947-2011-05393-6, Trans. Am. Math. Soc. 363 (2011), 4463-4474. (2011) Zbl1258.05066MR2792996DOI10.1090/S0002-9947-2011-05393-6
  3. Brouwer, A. E., Haemers, W. H., 10.1007/978-1-4614-1939-6, Universitext, Springer, Berlin (2012). (2012) Zbl1231.05001MR2882891DOI10.1007/978-1-4614-1939-6
  4. Cvetković, D., Rowlinson, P., Simić, S., 10.1017/CBO9780511801518, London Mathematical Society Student Texts 75, Cambridge University Press, Cambridge (2010). (2010) Zbl1211.05002MR2571608DOI10.1017/CBO9780511801518
  5. Du, Z., Zhou, B., 10.1016/j.laa.2012.01.007, Linear Algebra Appl. 436 (2012), 3672-3683. (2012) Zbl1241.05074MR2900744DOI10.1016/j.laa.2012.01.007
  6. Feng, L., Yu, G., 10.2298/PIM0999035F, Publ. Inst. Math., Nouv. Sér. 85 (2009), 35-38. (2009) Zbl1265.05365MR2536687DOI10.2298/PIM0999035F
  7. Fritscher, E., Hoppen, C., Rocha, I., Trevisan, V., 10.1016/j.laa.2011.01.036, Linear Algebra Appl. 435 (2011), 371-399. (2011) Zbl1226.05154MR2782788DOI10.1016/j.laa.2011.01.036
  8. Ganie, H. A., Alghamdi, A. M., Pirzada, S., 10.1016/j.laa.2016.03.034, Linear Algebra Appl. 501 (2016), 376-389. (2016) Zbl1334.05080MR3485073DOI10.1016/j.laa.2016.03.034
  9. Grone, R., Merris, R., 10.1137/S0895480191222653, SIAM J. Discrete Math. 7 (1994), 221-229. (1994) Zbl0795.05092MR1271994DOI10.1137/S0895480191222653
  10. Haemers, W. H., Mohammadian, A., Tayfeh-Rezaie, B., 10.1016/j.laa.2009.03.038, Linear Algebra Appl. 432 (2010), 2214-2221. (2010) Zbl1218.05094MR2599854DOI10.1016/j.laa.2009.03.038
  11. Rocha, I., Trevisan, V., 10.1016/j.dam.2014.01.023, Discrete Appl. Math. 170 (2014), 95-103. (2014) Zbl1288.05167MR3176708DOI10.1016/j.dam.2014.01.023
  12. Wang, S., Huang, Y., Liu, B., 10.1016/j.mcm.2011.12.047, Math. Comput. Modelling 56 (2012), 60-68. (2012) Zbl1255.05118MR2935294DOI10.1016/j.mcm.2011.12.047
  13. Yang, J., You, L., 10.1016/j.laa.2013.12.032, Linear Algebra Appl. 446 (2014), 115-132. (2014) Zbl1292.05182MR3163132DOI10.1016/j.laa.2013.12.032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.