Strongly 2-nil-clean rings with involutions
Huanyin Chen; Marjan Sheibani Abdolyousefi
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 2, page 317-330
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Huanyin, and Sheibani Abdolyousefi, Marjan. "Strongly 2-nil-clean rings with involutions." Czechoslovak Mathematical Journal 69.2 (2019): 317-330. <http://eudml.org/doc/294440>.
@article{Chen2019,
abstract = {A $*$-ring $R$ is strongly 2-nil-$*$-clean if every element in $R$ is the sum of two projections and a nilpotent that commute. Fundamental properties of such $*$-rings are obtained. We prove that a $*$-ring $R$ is strongly 2-nil-$*$-clean if and only if for all $a\in R$, $a^2\in R$ is strongly nil-$*$-clean, if and only if for any $a\in R$ there exists a $*$-tripotent $e\in R$ such that $a-e\in R$ is nilpotent and $ea=ae$, if and only if $R$ is a strongly $*$-clean SN ring, if and only if $R$ is abelian, $J(R)$ is nil and $R/J(R)$ is $*$-tripotent. Furthermore, we explore the structure of such rings and prove that a $*$-ring $R$ is strongly 2-nil-$*$-clean if and only if $R$ is abelian and $R\cong R_1, R_2$ or $R_1\times R_2$, where $R_1/J(R_1)$ is a $*$-Boolean ring and $J(R_1)$ is nil, $R_2/J(R_2)$ is a $*$-Yaqub ring and $J(R_2)$ is nil. The uniqueness of projections of such rings are thereby investigated.},
author = {Chen, Huanyin, Sheibani Abdolyousefi, Marjan},
journal = {Czechoslovak Mathematical Journal},
keywords = {nilpotent; projection; $*$-tripotent ring; symmetry; strongly $*$-clean ring},
language = {eng},
number = {2},
pages = {317-330},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Strongly 2-nil-clean rings with involutions},
url = {http://eudml.org/doc/294440},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Chen, Huanyin
AU - Sheibani Abdolyousefi, Marjan
TI - Strongly 2-nil-clean rings with involutions
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 317
EP - 330
AB - A $*$-ring $R$ is strongly 2-nil-$*$-clean if every element in $R$ is the sum of two projections and a nilpotent that commute. Fundamental properties of such $*$-rings are obtained. We prove that a $*$-ring $R$ is strongly 2-nil-$*$-clean if and only if for all $a\in R$, $a^2\in R$ is strongly nil-$*$-clean, if and only if for any $a\in R$ there exists a $*$-tripotent $e\in R$ such that $a-e\in R$ is nilpotent and $ea=ae$, if and only if $R$ is a strongly $*$-clean SN ring, if and only if $R$ is abelian, $J(R)$ is nil and $R/J(R)$ is $*$-tripotent. Furthermore, we explore the structure of such rings and prove that a $*$-ring $R$ is strongly 2-nil-$*$-clean if and only if $R$ is abelian and $R\cong R_1, R_2$ or $R_1\times R_2$, where $R_1/J(R_1)$ is a $*$-Boolean ring and $J(R_1)$ is nil, $R_2/J(R_2)$ is a $*$-Yaqub ring and $J(R_2)$ is nil. The uniqueness of projections of such rings are thereby investigated.
LA - eng
KW - nilpotent; projection; $*$-tripotent ring; symmetry; strongly $*$-clean ring
UR - http://eudml.org/doc/294440
ER -
References
top- Berberian, S. K., 10.1007/978-3-642-15071-5, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 195, Springer, New York (1972). (1972) Zbl0242.16008MR0429975DOI10.1007/978-3-642-15071-5
- Chen, H., 10.1142/9789814329729, Series in Algebra 11, World Scientific, Hackensack (2011). (2011) Zbl1245.16002MR2752904DOI10.1142/9789814329729
- Chen, H., Harmancı, A., Özcan, A. Ç., 10.1090/conm/609/12122, Ring Theory and Its Applications Contemporary Mathematics 609, American Mathematical Society, Providence D. V. Huynh, et al. (2014), 33-44. (2014) Zbl1296.16045MR3204350DOI10.1090/conm/609/12122
- Chen, H., Sheibani, M., 10.1142/S021949881750178X, J. Algebra Appl. 16 (2017), Article ID 1750178, 12 pages. (2017) Zbl1382.16035MR3661645DOI10.1142/S021949881750178X
- Cui, J., Wang, Z., 10.4134/JKMS.2015.52.4.839, J. Korean Math. Soc. 52 (2015), 839-851. (2015) Zbl1327.16030MR3369115DOI10.4134/JKMS.2015.52.4.839
- Danchev, P. V., 10.21099/tkbjm/1474747489, Tsukuba J. Math. 40 (2016), 101-118. (2016) Zbl1377.16031MR3550934DOI10.21099/tkbjm/1474747489
- Danchev, P. V., 10.4134/CKMS.c160054, Commun. Korean Math. Soc. 32 (2017), 19-27. (2017) Zbl1357.16054MR3608475DOI10.4134/CKMS.c160054
- Gao, Y., Chen, J., Li, Y., 10.1142/S1005386715000152, Algebra Colloq. 22 (2015), 169-180. (2015) Zbl1316.16018MR3296765DOI10.1142/S1005386715000152
- Han, D., Ren, Y., Zhang, H., 10.1142/S0219498817501523, J. Algebra Appl. 16 (2017), Article ID 1750152, 11 pages. (2017) Zbl1382.16018MR3661619DOI10.1142/S0219498817501523
- Hirano, Y., Tominaga, H., 10.1017/S000497270002668X, Bull. Aust. Math. Soc. 37 (1988), 161-164. (1988) Zbl0688.16015MR0930784DOI10.1017/S000497270002668X
- Huang, H., Li, Y., Yuan, P., 10.1080/00927872.2015.1044106, Commun. Algebra 44 (2016), 3171-3181. (2016) Zbl1355.16019MR3507177DOI10.1080/00927872.2015.1044106
- Koşan, T., Wang, Z., Zhou, Y., 10.1016/j.jpaa.2015.07.009, J. Pure Appl. Algebra 220 (2016), 633-646. (2016) Zbl1335.16026MR3399382DOI10.1016/j.jpaa.2015.07.009
- Li, Y., Parmenter, M. M., Yuan, P., 10.1142/S0219498815500048, J. Algebra Appl. 14 (2015), Article ID 1550004, 11 pages. (2015) Zbl1318.16024MR3257826DOI10.1142/S0219498815500048
- Li, C., Zhou, Y., 10.1142/S0219498811005221, J. Algebra Appl. 10 (2011), 1363-1370. (2011) Zbl1248.16030MR2864582DOI10.1142/S0219498811005221
- Ying, Z., Koşan, T., Zhou, Y., 10.4153/CMB-2016-009-0, Can. Math. Bull. 59 (2016), 661-672. (2016) Zbl1373.16067MR3563747DOI10.4153/CMB-2016-009-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.