Strongly 2-nil-clean rings with involutions

Huanyin Chen; Marjan Sheibani Abdolyousefi

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 2, page 317-330
  • ISSN: 0011-4642

Abstract

top
A * -ring R is strongly 2-nil- * -clean if every element in R is the sum of two projections and a nilpotent that commute. Fundamental properties of such * -rings are obtained. We prove that a * -ring R is strongly 2-nil- * -clean if and only if for all a R , a 2 R is strongly nil- * -clean, if and only if for any a R there exists a * -tripotent e R such that a - e R is nilpotent and e a = a e , if and only if R is a strongly * -clean SN ring, if and only if R is abelian, J ( R ) is nil and R / J ( R ) is * -tripotent. Furthermore, we explore the structure of such rings and prove that a * -ring R is strongly 2-nil- * -clean if and only if R is abelian and R R 1 , R 2 or R 1 × R 2 , where R 1 / J ( R 1 ) is a * -Boolean ring and J ( R 1 ) is nil, R 2 / J ( R 2 ) is a * -Yaqub ring and J ( R 2 ) is nil. The uniqueness of projections of such rings are thereby investigated.

How to cite

top

Chen, Huanyin, and Sheibani Abdolyousefi, Marjan. "Strongly 2-nil-clean rings with involutions." Czechoslovak Mathematical Journal 69.2 (2019): 317-330. <http://eudml.org/doc/294440>.

@article{Chen2019,
abstract = {A $*$-ring $R$ is strongly 2-nil-$*$-clean if every element in $R$ is the sum of two projections and a nilpotent that commute. Fundamental properties of such $*$-rings are obtained. We prove that a $*$-ring $R$ is strongly 2-nil-$*$-clean if and only if for all $a\in R$, $a^2\in R$ is strongly nil-$*$-clean, if and only if for any $a\in R$ there exists a $*$-tripotent $e\in R$ such that $a-e\in R$ is nilpotent and $ea=ae$, if and only if $R$ is a strongly $*$-clean SN ring, if and only if $R$ is abelian, $J(R)$ is nil and $R/J(R)$ is $*$-tripotent. Furthermore, we explore the structure of such rings and prove that a $*$-ring $R$ is strongly 2-nil-$*$-clean if and only if $R$ is abelian and $R\cong R_1, R_2$ or $R_1\times R_2$, where $R_1/J(R_1)$ is a $*$-Boolean ring and $J(R_1)$ is nil, $R_2/J(R_2)$ is a $*$-Yaqub ring and $J(R_2)$ is nil. The uniqueness of projections of such rings are thereby investigated.},
author = {Chen, Huanyin, Sheibani Abdolyousefi, Marjan},
journal = {Czechoslovak Mathematical Journal},
keywords = {nilpotent; projection; $*$-tripotent ring; symmetry; strongly $*$-clean ring},
language = {eng},
number = {2},
pages = {317-330},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Strongly 2-nil-clean rings with involutions},
url = {http://eudml.org/doc/294440},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Chen, Huanyin
AU - Sheibani Abdolyousefi, Marjan
TI - Strongly 2-nil-clean rings with involutions
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 317
EP - 330
AB - A $*$-ring $R$ is strongly 2-nil-$*$-clean if every element in $R$ is the sum of two projections and a nilpotent that commute. Fundamental properties of such $*$-rings are obtained. We prove that a $*$-ring $R$ is strongly 2-nil-$*$-clean if and only if for all $a\in R$, $a^2\in R$ is strongly nil-$*$-clean, if and only if for any $a\in R$ there exists a $*$-tripotent $e\in R$ such that $a-e\in R$ is nilpotent and $ea=ae$, if and only if $R$ is a strongly $*$-clean SN ring, if and only if $R$ is abelian, $J(R)$ is nil and $R/J(R)$ is $*$-tripotent. Furthermore, we explore the structure of such rings and prove that a $*$-ring $R$ is strongly 2-nil-$*$-clean if and only if $R$ is abelian and $R\cong R_1, R_2$ or $R_1\times R_2$, where $R_1/J(R_1)$ is a $*$-Boolean ring and $J(R_1)$ is nil, $R_2/J(R_2)$ is a $*$-Yaqub ring and $J(R_2)$ is nil. The uniqueness of projections of such rings are thereby investigated.
LA - eng
KW - nilpotent; projection; $*$-tripotent ring; symmetry; strongly $*$-clean ring
UR - http://eudml.org/doc/294440
ER -

References

top
  1. Berberian, S. K., 10.1007/978-3-642-15071-5, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 195, Springer, New York (1972). (1972) Zbl0242.16008MR0429975DOI10.1007/978-3-642-15071-5
  2. Chen, H., 10.1142/9789814329729, Series in Algebra 11, World Scientific, Hackensack (2011). (2011) Zbl1245.16002MR2752904DOI10.1142/9789814329729
  3. Chen, H., Harmancı, A., Özcan, A. Ç., 10.1090/conm/609/12122, Ring Theory and Its Applications Contemporary Mathematics 609, American Mathematical Society, Providence D. V. Huynh, et al. (2014), 33-44. (2014) Zbl1296.16045MR3204350DOI10.1090/conm/609/12122
  4. Chen, H., Sheibani, M., 10.1142/S021949881750178X, J. Algebra Appl. 16 (2017), Article ID 1750178, 12 pages. (2017) Zbl1382.16035MR3661645DOI10.1142/S021949881750178X
  5. Cui, J., Wang, Z., 10.4134/JKMS.2015.52.4.839, J. Korean Math. Soc. 52 (2015), 839-851. (2015) Zbl1327.16030MR3369115DOI10.4134/JKMS.2015.52.4.839
  6. Danchev, P. V., 10.21099/tkbjm/1474747489, Tsukuba J. Math. 40 (2016), 101-118. (2016) Zbl1377.16031MR3550934DOI10.21099/tkbjm/1474747489
  7. Danchev, P. V., 10.4134/CKMS.c160054, Commun. Korean Math. Soc. 32 (2017), 19-27. (2017) Zbl1357.16054MR3608475DOI10.4134/CKMS.c160054
  8. Gao, Y., Chen, J., Li, Y., 10.1142/S1005386715000152, Algebra Colloq. 22 (2015), 169-180. (2015) Zbl1316.16018MR3296765DOI10.1142/S1005386715000152
  9. Han, D., Ren, Y., Zhang, H., 10.1142/S0219498817501523, J. Algebra Appl. 16 (2017), Article ID 1750152, 11 pages. (2017) Zbl1382.16018MR3661619DOI10.1142/S0219498817501523
  10. Hirano, Y., Tominaga, H., 10.1017/S000497270002668X, Bull. Aust. Math. Soc. 37 (1988), 161-164. (1988) Zbl0688.16015MR0930784DOI10.1017/S000497270002668X
  11. Huang, H., Li, Y., Yuan, P., 10.1080/00927872.2015.1044106, Commun. Algebra 44 (2016), 3171-3181. (2016) Zbl1355.16019MR3507177DOI10.1080/00927872.2015.1044106
  12. Koşan, T., Wang, Z., Zhou, Y., 10.1016/j.jpaa.2015.07.009, J. Pure Appl. Algebra 220 (2016), 633-646. (2016) Zbl1335.16026MR3399382DOI10.1016/j.jpaa.2015.07.009
  13. Li, Y., Parmenter, M. M., Yuan, P., 10.1142/S0219498815500048, J. Algebra Appl. 14 (2015), Article ID 1550004, 11 pages. (2015) Zbl1318.16024MR3257826DOI10.1142/S0219498815500048
  14. Li, C., Zhou, Y., 10.1142/S0219498811005221, J. Algebra Appl. 10 (2011), 1363-1370. (2011) Zbl1248.16030MR2864582DOI10.1142/S0219498811005221
  15. Ying, Z., Koşan, T., Zhou, Y., 10.4153/CMB-2016-009-0, Can. Math. Bull. 59 (2016), 661-672. (2016) Zbl1373.16067MR3563747DOI10.4153/CMB-2016-009-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.