Operator Connes-amenability of completely bounded multiplier Banach algebras
Bahman Hayati; Abasalt Bodaghi; Massoud Amini
Archivum Mathematicum (2019)
- Volume: 055, Issue: 1, page 31-42
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topHayati, Bahman, Bodaghi, Abasalt, and Amini, Massoud. "Operator Connes-amenability of completely bounded multiplier Banach algebras." Archivum Mathematicum 055.1 (2019): 31-42. <http://eudml.org/doc/294443>.
@article{Hayati2019,
abstract = {For a completely contractive Banach algebra $B$, we find conditions under which the completely bounded multiplier algebra $\mathcal \{M\}_\{cb\}(B)$ is a dual Banach algebra and the operator amenability of $B$ is equivalent to the operator Connes-amenability of $\mathcal \{M\}_\{cb\}(B)$. We also show that, in this case, these are equivalent to the existence of a normal virtual operator diagonal.},
author = {Hayati, Bahman, Bodaghi, Abasalt, Amini, Massoud},
journal = {Archivum Mathematicum},
keywords = {amenability; Connes-amenability; dual multiplier algebra; normal virtual operator diagonal},
language = {eng},
number = {1},
pages = {31-42},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Operator Connes-amenability of completely bounded multiplier Banach algebras},
url = {http://eudml.org/doc/294443},
volume = {055},
year = {2019},
}
TY - JOUR
AU - Hayati, Bahman
AU - Bodaghi, Abasalt
AU - Amini, Massoud
TI - Operator Connes-amenability of completely bounded multiplier Banach algebras
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 1
SP - 31
EP - 42
AB - For a completely contractive Banach algebra $B$, we find conditions under which the completely bounded multiplier algebra $\mathcal {M}_{cb}(B)$ is a dual Banach algebra and the operator amenability of $B$ is equivalent to the operator Connes-amenability of $\mathcal {M}_{cb}(B)$. We also show that, in this case, these are equivalent to the existence of a normal virtual operator diagonal.
LA - eng
KW - amenability; Connes-amenability; dual multiplier algebra; normal virtual operator diagonal
UR - http://eudml.org/doc/294443
ER -
References
top- Daws, M., 10.7146/math.scand.a-15010, Math. Scand. 99 (2006), 217–246. (2006) MR2289023DOI10.7146/math.scand.a-15010
- Daws, M., Multipliers, self-induced and dual Banach algebras, Dissertationes Math. (Rozprawy Mat.) 470 (2010), 62 pp. (2010) MR2681109
- Deutsch, E., 10.1007/BF02162408, Numer. Math. 19 (1) (1970), 73–84. (1970) MR0277552DOI10.1007/BF02162408
- Effros, E.G., Ruan, Z.-J., Operator Spaces, Clarendon Press, 2000. (2000) MR1793753
- Hayati, B., Amini, M., 10.1215/0023608X-2009-003, Kyoto J. Math. 50 (2010), 41–50. (2010) MR2629641DOI10.1215/0023608X-2009-003
- Hayati, B., Amini, M., 10.5486/PMD.2015.7043, Publ. Math. Debrecen 86 (2015), 169–182. (2015) MR3300584DOI10.5486/PMD.2015.7043
- Helmeskii, A.Ya., 10.1070/SM1991v068n02ABEH001374, Math. USSR.-Sb. 68 (1991), 555–566. (1991) DOI10.1070/SM1991v068n02ABEH001374
- Johnson, B.E., 10.1112/plms/s3-14.2.299, Proc. London Math. Soc. 14 (1964), 299–320. (1964) MR0159233DOI10.1112/plms/s3-14.2.299
- Johnson, B.E., Cohomology in Banach Algebras, Mem. Amer. Math. Soc. 127 (1972). (1972) Zbl0256.18014MR0374934
- Johnson, B.E., 10.1112/jlms/50.2.361, J. London Math. Soc. 50 (2) (1994), 361–374. (1994) MR1291743DOI10.1112/jlms/50.2.361
- Johnson, B.E., Kadison, R.V., Ringrose, J.R., 10.24033/bsmf.1731, Bull. Soc. Math. France 100 (1972), 73–96. (1972) MR0318908DOI10.24033/bsmf.1731
- Larsen, R., An Introduction to the Theory of Mutipliers, Springer-Verlag, Berlin, 1971. (1971) MR0435738
- Oshobi, E.O., Pym, J.S., 10.1017/S0305004100067542, Math. Proc. Cambridge Philos. Soc. 102 (1987), 481–505. (1987) MR0906623DOI10.1017/S0305004100067542
- Ruan, Z.-J., 10.2307/2375026, Amer. J. Math. 117 (1995), 1449–1474. (1995) MR1363075DOI10.2307/2375026
- Runde, V., 10.4064/sm148-1-5, Studia Math. 148 (2001), 47–66. (2001) Zbl1003.46028MR1881439DOI10.4064/sm148-1-5
- Runde, V., Lectures on Amenability, Lecture Notes in Math., vol. 1774, Springer-Verlag, Berlin-Heidelberg-New York, 2002. (2002) Zbl0999.46022MR1874893
- Runde, V., 10.1112/S0024610703004125, J. London Math. Soc. 67 (2003), 643–656. (2003) MR1967697DOI10.1112/S0024610703004125
- Runde, V., 10.1017/S0004972700037709, Bull. Austral. Math. Soc. 68 (2003), 325–328. (2003) MR2016307DOI10.1017/S0004972700037709
- Runde, V., 10.7146/math.scand.a-14452, Math. Scand. 95 (2004), 124–144. (2004) MR2091485DOI10.7146/math.scand.a-14452
- Runde, V., Spronk, N., 10.1017/S030500410300745X, Math. Proc. Cambridge Philos. Soc. 136 (2004), 675–686. (2004) MR2055055DOI10.1017/S030500410300745X
- Runde, V., Uygul, F., Connes-amenability of Fourier-Stieltjes algebras, Bull. London Math. Soc. (2015). (2015) MR3375923
- Spronk, N., Measurable Schur multiplies and completely bounded multipliers of the Fourier algebras, Proc. London Math. Soc. 89 (2004), 161–192. (2004) MR2063663
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.