-modules and generalized submodules
Rafiquddin Rafiquddin; Ayazul Hasan; Mohammad Fareed Ahmad
Communications in Mathematics (2019)
- Volume: 27, Issue: 1, page 13-26
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topRafiquddin, Rafiquddin, Hasan, Ayazul, and Ahmad, Mohammad Fareed. "$\alpha $-modules and generalized submodules." Communications in Mathematics 27.1 (2019): 13-26. <http://eudml.org/doc/294448>.
@article{Rafiquddin2019,
abstract = {A QTAG-module $M$ is an $\alpha $-module, where $\alpha $ is a limit ordinal, if $M/H_\beta (M)$ is totally projective for every ordinal $\beta < \alpha $. In the present paper $\alpha $-modules are studied with the help of $\alpha $-pure submodules, $\alpha $-basic submodules, and $\alpha $-large submodules. It is found that an $\alpha $-closed $\alpha $-module is an $\alpha $-injective. For any ordinal $\omega \le \alpha \le \omega _1$ we prove that an $\alpha $-large submodule $L$ of an $\omega _1$-module $M$ is summable if and only if $M$ is summable.},
author = {Rafiquddin, Rafiquddin, Hasan, Ayazul, Ahmad, Mohammad Fareed},
journal = {Communications in Mathematics},
keywords = {$\alpha $-modules; $\alpha $-pure submodules; $\alpha $-basic submodules; $\alpha $-large submodules},
language = {eng},
number = {1},
pages = {13-26},
publisher = {University of Ostrava},
title = {$\alpha $-modules and generalized submodules},
url = {http://eudml.org/doc/294448},
volume = {27},
year = {2019},
}
TY - JOUR
AU - Rafiquddin, Rafiquddin
AU - Hasan, Ayazul
AU - Ahmad, Mohammad Fareed
TI - $\alpha $-modules and generalized submodules
JO - Communications in Mathematics
PY - 2019
PB - University of Ostrava
VL - 27
IS - 1
SP - 13
EP - 26
AB - A QTAG-module $M$ is an $\alpha $-module, where $\alpha $ is a limit ordinal, if $M/H_\beta (M)$ is totally projective for every ordinal $\beta < \alpha $. In the present paper $\alpha $-modules are studied with the help of $\alpha $-pure submodules, $\alpha $-basic submodules, and $\alpha $-large submodules. It is found that an $\alpha $-closed $\alpha $-module is an $\alpha $-injective. For any ordinal $\omega \le \alpha \le \omega _1$ we prove that an $\alpha $-large submodule $L$ of an $\omega _1$-module $M$ is summable if and only if $M$ is summable.
LA - eng
KW - $\alpha $-modules; $\alpha $-pure submodules; $\alpha $-basic submodules; $\alpha $-large submodules
UR - http://eudml.org/doc/294448
ER -
References
top- Ansari, A. H., Ahmad, M., Khan, M.Z., Some decomposition theorems on -modules. III, Tamkang J. Math., 12, 2, 1981, 147-154, (1981) MR0676096
- Benabdallah, K., Singh, S., On torsion abelian groups like modules, Lecture Notes in Mathematics, Springer Verlag, 1006, 1983, 639-653, (1983) MR0722656
- Fuchs, L., Infinite Abelian Groups, 1970, Academic Press, New York, Vol. I. (1970) MR0255673
- Fuchs, L., Infinite Abelian Groups, 1973, Academic Press, New York, Vol. II. (1973) Zbl0257.20035MR0349869
- Hasan, A., 10.1007/s13370-015-0318-7, Afrika Mat., 27, 1, 2016, 79-85, (2016) MR3459317DOI10.1007/s13370-015-0318-7
- Hasan, A., 10.1515/gmj-2015-0061, Georgian Math. J., 23, 2, 2016, 221-226, (2016) MR3507951DOI10.1515/gmj-2015-0061
- Hasan, A., Rafiquddin, 10.1515/tmj-2017-0039, Tbilisi Math. J., 10, 2, 2017, 235-242, (2017) MR3689617DOI10.1515/tmj-2017-0039
- Hasan, A., Rafiquddin, Ahmad, M.F., On -modules and their applications, Southeast Asian Bull. Math., 2019, To appear. (2019) MR3966293
- Khan, M.Z., -divisible and basic submodules, Tamkang J. Math., 10, 2, 1979, 197-203, (1979) MR0584534
- Mehdi, A., Abbasi, M.Y., Mehdi, F., Nice decomposition series and rich modules, South East Asian J. Math. & Math. Sci., 4, 1, 2005, 1-6, (2005) MR2208767
- Mehdi, A., Naji, S.A.R.K., Hasan, A., Small homomorphisms and large submodules of QTAG-modules, Sci. Ser. A. Math Sci., 23, 2012, 19-24, (2012) MR2961700
- Mehdi, A., Sikander, F., Naji, S.A.R.K., 10.1007/s13370-013-0167-1, Afrika Mat., 25, 4, 2014, 975-986, (2014) MR3277863DOI10.1007/s13370-013-0167-1
- Mehran, H., Singh, S., 10.1007/BF01195018, Arch. Math., 46, 1986, 501-510, (1986) MR0849855DOI10.1007/BF01195018
- Naji, S.A.R.K., A study of different structures in QTAG-modules, 2010, Ph.D. Thesis, Aligarh Muslim University. (2010)
- Singh, S., Some decomposition theorems in abelian groups and their generalizations, Ring Theory: Proceedings of Ohio University Conference 25, 1976, 183-189, Marcel Dekker, New York, (1976) MR0435146
- Singh, S., 10.1007/BF01903367, Act. Math. Hung, 50, 1987, 85-95, (1987) MR0893248DOI10.1007/BF01903367
- Singh, S., Khan, M.Z., 10.1155/S0161171298001112, Internat. J. Math. & Math. Sci., 21, 4, 1998, 801-814, (1998) MR1642265DOI10.1155/S0161171298001112
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.