α -modules and generalized submodules

Rafiquddin Rafiquddin; Ayazul Hasan; Mohammad Fareed Ahmad

Communications in Mathematics (2019)

  • Volume: 27, Issue: 1, page 13-26
  • ISSN: 1804-1388

Abstract

top
A QTAG-module M is an α -module, where α is a limit ordinal, if M / H β ( M ) is totally projective for every ordinal β < α . In the present paper α -modules are studied with the help of α -pure submodules, α -basic submodules, and α -large submodules. It is found that an α -closed α -module is an α -injective. For any ordinal ω α ω 1 we prove that an α -large submodule L of an ω 1 -module M is summable if and only if M is summable.

How to cite

top

Rafiquddin, Rafiquddin, Hasan, Ayazul, and Ahmad, Mohammad Fareed. "$\alpha $-modules and generalized submodules." Communications in Mathematics 27.1 (2019): 13-26. <http://eudml.org/doc/294448>.

@article{Rafiquddin2019,
abstract = {A QTAG-module $M$ is an $\alpha $-module, where $\alpha $ is a limit ordinal, if $M/H_\beta (M)$ is totally projective for every ordinal $\beta < \alpha $. In the present paper $\alpha $-modules are studied with the help of $\alpha $-pure submodules, $\alpha $-basic submodules, and $\alpha $-large submodules. It is found that an $\alpha $-closed $\alpha $-module is an $\alpha $-injective. For any ordinal $\omega \le \alpha \le \omega _1$ we prove that an $\alpha $-large submodule $L$ of an $\omega _1$-module $M$ is summable if and only if $M$ is summable.},
author = {Rafiquddin, Rafiquddin, Hasan, Ayazul, Ahmad, Mohammad Fareed},
journal = {Communications in Mathematics},
keywords = {$\alpha $-modules; $\alpha $-pure submodules; $\alpha $-basic submodules; $\alpha $-large submodules},
language = {eng},
number = {1},
pages = {13-26},
publisher = {University of Ostrava},
title = {$\alpha $-modules and generalized submodules},
url = {http://eudml.org/doc/294448},
volume = {27},
year = {2019},
}

TY - JOUR
AU - Rafiquddin, Rafiquddin
AU - Hasan, Ayazul
AU - Ahmad, Mohammad Fareed
TI - $\alpha $-modules and generalized submodules
JO - Communications in Mathematics
PY - 2019
PB - University of Ostrava
VL - 27
IS - 1
SP - 13
EP - 26
AB - A QTAG-module $M$ is an $\alpha $-module, where $\alpha $ is a limit ordinal, if $M/H_\beta (M)$ is totally projective for every ordinal $\beta < \alpha $. In the present paper $\alpha $-modules are studied with the help of $\alpha $-pure submodules, $\alpha $-basic submodules, and $\alpha $-large submodules. It is found that an $\alpha $-closed $\alpha $-module is an $\alpha $-injective. For any ordinal $\omega \le \alpha \le \omega _1$ we prove that an $\alpha $-large submodule $L$ of an $\omega _1$-module $M$ is summable if and only if $M$ is summable.
LA - eng
KW - $\alpha $-modules; $\alpha $-pure submodules; $\alpha $-basic submodules; $\alpha $-large submodules
UR - http://eudml.org/doc/294448
ER -

References

top
  1. Ansari, A. H., Ahmad, M., Khan, M.Z., Some decomposition theorems on S 2 -modules. III, Tamkang J. Math., 12, 2, 1981, 147-154, (1981) MR0676096
  2. Benabdallah, K., Singh, S., On torsion abelian groups like modules, Lecture Notes in Mathematics, Springer Verlag, 1006, 1983, 639-653, (1983) MR0722656
  3. Fuchs, L., Infinite Abelian Groups, 1970, Academic Press, New York, Vol. I. (1970) MR0255673
  4. Fuchs, L., Infinite Abelian Groups, 1973, Academic Press, New York, Vol. II. (1973) Zbl0257.20035MR0349869
  5. Hasan, A., 10.1007/s13370-015-0318-7, Afrika Mat., 27, 1, 2016, 79-85, (2016) MR3459317DOI10.1007/s13370-015-0318-7
  6. Hasan, A., 10.1515/gmj-2015-0061, Georgian Math. J., 23, 2, 2016, 221-226, (2016) MR3507951DOI10.1515/gmj-2015-0061
  7. Hasan, A., Rafiquddin, 10.1515/tmj-2017-0039, Tbilisi Math. J., 10, 2, 2017, 235-242, (2017) MR3689617DOI10.1515/tmj-2017-0039
  8. Hasan, A., Rafiquddin, Ahmad, M.F., On α -modules and their applications, Southeast Asian Bull. Math., 2019, To appear. (2019) MR3966293
  9. Khan, M.Z., h -divisible and basic submodules, Tamkang J. Math., 10, 2, 1979, 197-203, (1979) MR0584534
  10. Mehdi, A., Abbasi, M.Y., Mehdi, F., Nice decomposition series and rich modules, South East Asian J. Math. & Math. Sci., 4, 1, 2005, 1-6, (2005) MR2208767
  11. Mehdi, A., Naji, S.A.R.K., Hasan, A., Small homomorphisms and large submodules of QTAG-modules, Sci. Ser. A. Math Sci., 23, 2012, 19-24, (2012) MR2961700
  12. Mehdi, A., Sikander, F., Naji, S.A.R.K., 10.1007/s13370-013-0167-1, Afrika Mat., 25, 4, 2014, 975-986, (2014) MR3277863DOI10.1007/s13370-013-0167-1
  13. Mehran, H., Singh, S., 10.1007/BF01195018, Arch. Math., 46, 1986, 501-510, (1986) MR0849855DOI10.1007/BF01195018
  14. Naji, S.A.R.K., A study of different structures in QTAG-modules, 2010, Ph.D. Thesis, Aligarh Muslim University. (2010) 
  15. Singh, S., Some decomposition theorems in abelian groups and their generalizations, Ring Theory: Proceedings of Ohio University Conference 25, 1976, 183-189, Marcel Dekker, New York, (1976) MR0435146
  16. Singh, S., 10.1007/BF01903367, Act. Math. Hung, 50, 1987, 85-95, (1987) MR0893248DOI10.1007/BF01903367
  17. Singh, S., Khan, M.Z., 10.1155/S0161171298001112, Internat. J. Math. & Math. Sci., 21, 4, 1998, 801-814, (1998) MR1642265DOI10.1155/S0161171298001112

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.