On the weighted estimate of the Bergman projection

Benoît Florent Sehba

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 2, page 497-511
  • ISSN: 0011-4642

Abstract

top
We present a proof of the weighted estimate of the Bergman projection that does not use extrapolation results. This estimate is extended to product domains using an adapted definition of Békollé-Bonami weights in this setting. An application to bounded Toeplitz products is also given.

How to cite

top

Sehba, Benoît Florent. "On the weighted estimate of the Bergman projection." Czechoslovak Mathematical Journal 68.2 (2018): 497-511. <http://eudml.org/doc/294452>.

@article{Sehba2018,
abstract = {We present a proof of the weighted estimate of the Bergman projection that does not use extrapolation results. This estimate is extended to product domains using an adapted definition of Békollé-Bonami weights in this setting. An application to bounded Toeplitz products is also given.},
author = {Sehba, Benoît Florent},
journal = {Czechoslovak Mathematical Journal},
keywords = {Bergman space; reproducing kernel; Toeplitz operator; Békollé-Bonami weight},
language = {eng},
number = {2},
pages = {497-511},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the weighted estimate of the Bergman projection},
url = {http://eudml.org/doc/294452},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Sehba, Benoît Florent
TI - On the weighted estimate of the Bergman projection
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 497
EP - 511
AB - We present a proof of the weighted estimate of the Bergman projection that does not use extrapolation results. This estimate is extended to product domains using an adapted definition of Békollé-Bonami weights in this setting. An application to bounded Toeplitz products is also given.
LA - eng
KW - Bergman space; reproducing kernel; Toeplitz operator; Békollé-Bonami weight
UR - http://eudml.org/doc/294452
ER -

References

top
  1. Aleman, A., Pott, S., Reguera, M. C., 10.1093/imrn/rnw134, Int. Math. Res. Not. 2017 (2017), 4320-4349. (2017) MR3674172DOI10.1093/imrn/rnw134
  2. Bekollé, D., 10.4064/sm-71-3-305-323, Stud. Math. 71 (1982), 305-323 French. (1982) Zbl0516.47016MR0667319DOI10.4064/sm-71-3-305-323
  3. Bekollé, D., Bonami, A., Inégalités à poids pour le noyau de Bergman, C. R. Acad. Sci., Paris, Sér. A 286 (1978), 775-778 French. (1978) Zbl0398.30006MR0497663
  4. Cruz-Uribe, D., 10.1007/BF01679672, Integral Equations Oper. Theory 20 (1994), 231-237. (1994) Zbl0817.47034MR1294717DOI10.1007/BF01679672
  5. García-Cuerva, J., Francia, J. L. Rubio de, 10.1016/s0304-0208(08)x7154-3, North-Holland Mathematics Studies, 116 Notas de Matemática (104), North-Holland Publishing, Amsterdam (1985). (1985) Zbl0578.46046MR0807149DOI10.1016/s0304-0208(08)x7154-3
  6. Hytönen, T. P., Lacey, M. T., Pérez, C., 10.1112/blms/bds114, Bull. Lond. Math. Soc. 45 (2013), 529-540. (2013) Zbl1271.42021MR3065022DOI10.1112/blms/bds114
  7. Hytönen, T., Pérez, C., 10.2140/apde.2013.6.777, Anal. PDE 6 (2013), 777-818. (2013) Zbl1283.42032MR3092729DOI10.2140/apde.2013.6.777
  8. Isralowitz, J., 10.7900/jot.2012apr10.1989, J. Oper. Theory 71 (2014), 381-410. (2014) Zbl1313.47059MR3214643DOI10.7900/jot.2012apr10.1989
  9. Lerner, A. K., 10.1093/imrn/rns145, Int. Math. Res. Not. 2013 (2013), 3159-3170. (2013) Zbl1318.42018MR3085756DOI10.1093/imrn/rns145
  10. Michalska, M., Nowak, M., Sobolewski, P., 10.4064/ap99-1-4, Ann. Pol. Math. 99 (2010), 45-53. (2010) Zbl1239.47021MR2660591DOI10.4064/ap99-1-4
  11. Moen, K., 10.1007/s00013-012-0453-4, Arch. Math. 99 (2012), 457-466. (2012) Zbl1266.42037MR3000426DOI10.1007/s00013-012-0453-4
  12. Nazarov, F., A counterexample to Sarason's conjecture, Preprint available at http://users.math.msu.edu/users/fedja/Preprints/Sarps.html. 
  13. Pott, S., Reguera, M. C., 10.1016/j.jfa.2013.08.018, J. Funct. Anal. 265 (2013), 3233-3244. (2013) Zbl1295.46020MR3110501DOI10.1016/j.jfa.2013.08.018
  14. Pott, S., Strouse, E., 10.1090/S1061-0022-06-00945-9, Algebra Anal. 18 (2006), 144-161 translation in St. Petersbg. Math. J. 18 2007 105-118. (2006) Zbl1127.47028MR2225216DOI10.1090/S1061-0022-06-00945-9
  15. Sarason, D., 10.1007/BFb0100201, Linear and Complex Analysis Problem Book 3, Part I V. P. Havin, N. K. Nikolski Lecture Notes in Mathematics 1573, Springer, Berlin (1994), 318-319. (1994) Zbl0893.30036MR1334345DOI10.1007/BFb0100201
  16. Stroethoff, K., Zheng, D., 10.1016/S0022-247X(02)00578-4, J. Math. Anal. Appl. 278 (2003), 125-135. (2003) Zbl1051.47025MR1963469DOI10.1016/S0022-247X(02)00578-4
  17. Stroethoff, K., Zheng, D., 10.1016/j.jmaa.2006.01.009, J. Math. Anal. Appl. 325 (2007), 114-129. (2007) Zbl1111.32003MR2273032DOI10.1016/j.jmaa.2006.01.009
  18. Stroethoff, K., Zheng, D., Bounded Toeplitz products on weighted Bergman spaces, J. Oper. Theory 59 (2008), 277-308. (2008) Zbl1199.47127MR2411047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.