On the weighted estimate of the Bergman projection
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 2, page 497-511
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSehba, Benoît Florent. "On the weighted estimate of the Bergman projection." Czechoslovak Mathematical Journal 68.2 (2018): 497-511. <http://eudml.org/doc/294452>.
@article{Sehba2018,
abstract = {We present a proof of the weighted estimate of the Bergman projection that does not use extrapolation results. This estimate is extended to product domains using an adapted definition of Békollé-Bonami weights in this setting. An application to bounded Toeplitz products is also given.},
author = {Sehba, Benoît Florent},
journal = {Czechoslovak Mathematical Journal},
keywords = {Bergman space; reproducing kernel; Toeplitz operator; Békollé-Bonami weight},
language = {eng},
number = {2},
pages = {497-511},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the weighted estimate of the Bergman projection},
url = {http://eudml.org/doc/294452},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Sehba, Benoît Florent
TI - On the weighted estimate of the Bergman projection
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 497
EP - 511
AB - We present a proof of the weighted estimate of the Bergman projection that does not use extrapolation results. This estimate is extended to product domains using an adapted definition of Békollé-Bonami weights in this setting. An application to bounded Toeplitz products is also given.
LA - eng
KW - Bergman space; reproducing kernel; Toeplitz operator; Békollé-Bonami weight
UR - http://eudml.org/doc/294452
ER -
References
top- Aleman, A., Pott, S., Reguera, M. C., 10.1093/imrn/rnw134, Int. Math. Res. Not. 2017 (2017), 4320-4349. (2017) MR3674172DOI10.1093/imrn/rnw134
- Bekollé, D., 10.4064/sm-71-3-305-323, Stud. Math. 71 (1982), 305-323 French. (1982) Zbl0516.47016MR0667319DOI10.4064/sm-71-3-305-323
- Bekollé, D., Bonami, A., Inégalités à poids pour le noyau de Bergman, C. R. Acad. Sci., Paris, Sér. A 286 (1978), 775-778 French. (1978) Zbl0398.30006MR0497663
- Cruz-Uribe, D., 10.1007/BF01679672, Integral Equations Oper. Theory 20 (1994), 231-237. (1994) Zbl0817.47034MR1294717DOI10.1007/BF01679672
- García-Cuerva, J., Francia, J. L. Rubio de, 10.1016/s0304-0208(08)x7154-3, North-Holland Mathematics Studies, 116 Notas de Matemática (104), North-Holland Publishing, Amsterdam (1985). (1985) Zbl0578.46046MR0807149DOI10.1016/s0304-0208(08)x7154-3
- Hytönen, T. P., Lacey, M. T., Pérez, C., 10.1112/blms/bds114, Bull. Lond. Math. Soc. 45 (2013), 529-540. (2013) Zbl1271.42021MR3065022DOI10.1112/blms/bds114
- Hytönen, T., Pérez, C., 10.2140/apde.2013.6.777, Anal. PDE 6 (2013), 777-818. (2013) Zbl1283.42032MR3092729DOI10.2140/apde.2013.6.777
- Isralowitz, J., 10.7900/jot.2012apr10.1989, J. Oper. Theory 71 (2014), 381-410. (2014) Zbl1313.47059MR3214643DOI10.7900/jot.2012apr10.1989
- Lerner, A. K., 10.1093/imrn/rns145, Int. Math. Res. Not. 2013 (2013), 3159-3170. (2013) Zbl1318.42018MR3085756DOI10.1093/imrn/rns145
- Michalska, M., Nowak, M., Sobolewski, P., 10.4064/ap99-1-4, Ann. Pol. Math. 99 (2010), 45-53. (2010) Zbl1239.47021MR2660591DOI10.4064/ap99-1-4
- Moen, K., 10.1007/s00013-012-0453-4, Arch. Math. 99 (2012), 457-466. (2012) Zbl1266.42037MR3000426DOI10.1007/s00013-012-0453-4
- Nazarov, F., A counterexample to Sarason's conjecture, Preprint available at http://users.math.msu.edu/users/fedja/Preprints/Sarps.html.
- Pott, S., Reguera, M. C., 10.1016/j.jfa.2013.08.018, J. Funct. Anal. 265 (2013), 3233-3244. (2013) Zbl1295.46020MR3110501DOI10.1016/j.jfa.2013.08.018
- Pott, S., Strouse, E., 10.1090/S1061-0022-06-00945-9, Algebra Anal. 18 (2006), 144-161 translation in St. Petersbg. Math. J. 18 2007 105-118. (2006) Zbl1127.47028MR2225216DOI10.1090/S1061-0022-06-00945-9
- Sarason, D., 10.1007/BFb0100201, Linear and Complex Analysis Problem Book 3, Part I V. P. Havin, N. K. Nikolski Lecture Notes in Mathematics 1573, Springer, Berlin (1994), 318-319. (1994) Zbl0893.30036MR1334345DOI10.1007/BFb0100201
- Stroethoff, K., Zheng, D., 10.1016/S0022-247X(02)00578-4, J. Math. Anal. Appl. 278 (2003), 125-135. (2003) Zbl1051.47025MR1963469DOI10.1016/S0022-247X(02)00578-4
- Stroethoff, K., Zheng, D., 10.1016/j.jmaa.2006.01.009, J. Math. Anal. Appl. 325 (2007), 114-129. (2007) Zbl1111.32003MR2273032DOI10.1016/j.jmaa.2006.01.009
- Stroethoff, K., Zheng, D., Bounded Toeplitz products on weighted Bergman spaces, J. Oper. Theory 59 (2008), 277-308. (2008) Zbl1199.47127MR2411047
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.