Finite distortion functions and Douglas-Dirichlet functionals
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 1, page 183-195
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topShi, Qingtian. "Finite distortion functions and Douglas-Dirichlet functionals." Czechoslovak Mathematical Journal 69.1 (2019): 183-195. <http://eudml.org/doc/294460>.
@article{Shi2019,
abstract = {In this paper, we estimate the Douglas-Dirichlet functionals of harmonic mappings, namely Euclidean harmonic mapping and flat harmonic mapping, by using the extremal dilatation of finite distortion functions with given boundary value on the unit circle. In addition, $\bar\{\partial \}$-Dirichlet functionals of harmonic mappings are also investigated.},
author = {Shi, Qingtian},
journal = {Czechoslovak Mathematical Journal},
keywords = {Douglas-Dirichlet functional; $\rho $-harmonic mapping; finite distortion functions; extremal quasiconformal mapping; Dirichlet’s principle},
language = {eng},
number = {1},
pages = {183-195},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Finite distortion functions and Douglas-Dirichlet functionals},
url = {http://eudml.org/doc/294460},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Shi, Qingtian
TI - Finite distortion functions and Douglas-Dirichlet functionals
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 183
EP - 195
AB - In this paper, we estimate the Douglas-Dirichlet functionals of harmonic mappings, namely Euclidean harmonic mapping and flat harmonic mapping, by using the extremal dilatation of finite distortion functions with given boundary value on the unit circle. In addition, $\bar{\partial }$-Dirichlet functionals of harmonic mappings are also investigated.
LA - eng
KW - Douglas-Dirichlet functional; $\rho $-harmonic mapping; finite distortion functions; extremal quasiconformal mapping; Dirichlet’s principle
UR - http://eudml.org/doc/294460
ER -
References
top- Astala, K., Iwaniec, T., Martin, G. J., 10.1515/9781400830114, Princeton Mathematical Series 48, Princeton University Press, Princeton (2009). (2009) Zbl1182.30001MR2472875DOI10.1515/9781400830114
- Astala, K., Iwaniec, T., Martin, G. J., Onninen, J., 10.1112/S0024611505015376, Proc. Lond. Math. Soc., III. Ser. 91 (2005), 655-702. (2005) Zbl1089.30013MR2180459DOI10.1112/S0024611505015376
- Chen, X., Qian, T., 10.1080/17476933.2014.984292, Complex Var. Elliptic Equ. 60 (2015), 875-892. (2015) Zbl1317.30025MR3345479DOI10.1080/17476933.2014.984292
- Duren, P., 10.1017/CBO9780511546600, Cambridge Tracts in Mathematics 156, Cambridge University Press, Cambridge (2004). (2004) Zbl1055.31001MR2048384DOI10.1017/CBO9780511546600
- Feng, X., 10.3969/j.issn.1008-5513.2016.02.002, Pure Appl. Math. 32 (2016), 119-126 Chinese. (2016) Zbl1363.30046DOI10.3969/j.issn.1008-5513.2016.02.002
- Feng, X., Tang, S., 10.1007/s00013-016-0906-2, Arch. Math. 107 (2016), 81-88. (2016) Zbl1352.30037MR3514730DOI10.1007/s00013-016-0906-2
- Hencl, S., Koskela, P., Onninen, J., 10.4310/MRL.2005.v12.n2.a8, Math. Res. Lett. 12 (2005), 231-237. (2005) Zbl1079.30024MR2150879DOI10.4310/MRL.2005.v12.n2.a8
- Kalaj, D., Mateljević, M., 10.1007/BF02916757, J. Anal. Math. 100 (2006), 117-132. (2006) Zbl1173.30311MR2303306DOI10.1007/BF02916757
- Li, Z., 10.1007/BF02882940, Chin. Sci. Bull. 42 (1997), 2025-2045. (1997) Zbl0905.30017MR1641041DOI10.1007/BF02882940
- Mateljević, M., 10.2298/PIM0475147M, Publ. Inst. Math., Nouv. Sér. 75(89) (2004), 147-171. (2004) Zbl1081.30022MR2108004DOI10.2298/PIM0475147M
- Mateljević, M., Dirichlet's principle, uniqueness of harmonic maps and extremal QC mappings, Zbornik Radova (Beograd) 10(18) (2004), 41-91. (2004) Zbl1289.30001MR2109104
- Qi, Y., Shi, Q., 10.2298/FIL1702335Y, Filomat 31 (2017), 335-345. (2017) MR3628843DOI10.2298/FIL1702335Y
- Reich, E., 10.5186/aasfm.1985.1052, Ann. Acad. Sci. Fenn., Ser. A I, Math. 10 (1985), 469-475. (1985) Zbl0592.30027MR0802510DOI10.5186/aasfm.1985.1052
- Reich, E., 10.1007/BF02796588, J. Anal. Math. 46 (1986), 239-245. (1986) Zbl0608.30023MR0861702DOI10.1007/BF02796588
- Schoen, R., Yau, T. S., 10.1007/BF01403164, Invent. Math. 44 (1978), 265-278. (1978) Zbl0388.58005MR0478219DOI10.1007/BF01403164
- Shen, Y., Quasiconformal mappings and harmonic functions, Adv. Math., Beijing 28 (1999), 347-357. (1999) Zbl1054.30506MR1767643
- Shen, Y., 10.1006/jmaa.2000.6806, J. Math. Anal. Appl. 247 (2000), 27-44. (2000) Zbl0961.30011MR1766923DOI10.1006/jmaa.2000.6806
- Wei, H., 10.1090/S0002-9939-96-03178-4, Proc. Am. Math. Soc. 124 (1996), 2337-2341. (1996) Zbl0858.30014MR1307523DOI10.1090/S0002-9939-96-03178-4
- Yao, G., 10.1090/S0002-9939-02-06757-6, Proc. Am. Math. Soc. 131 (2003), 2271-2277. (2003) Zbl1074.30018MR1963777DOI10.1090/S0002-9939-02-06757-6
- Yao, G., 10.1002/mana.200310294, Math. Nachr. 278 (2005), 1086-1096. (2005) Zbl1083.30020MR2150380DOI10.1002/mana.200310294
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.