Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL for
Mark L. Lewis; Yanjun Liu; Hung P. Tong-Viet
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 4, page 921-941
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLewis, Mark L., Liu, Yanjun, and Tong-Viet, Hung P.. "Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL$_2(q)$ for $q\ge 7$." Czechoslovak Mathematical Journal 68.4 (2018): 921-941. <http://eudml.org/doc/294463>.
@article{Lewis2018,
abstract = {Let $G$ be a finite group and write $\{\rm cd\} (G)$ for the degree set of the complex irreducible characters of $G$. The group $G$ is said to satisfy the two-prime hypothesis if for any distinct degrees $a, b \in \{\rm cd\} (G)$, the total number of (not necessarily different) primes of the greatest common divisor $\gcd (a, b)$ is at most $2$. We prove an upper bound on the number of irreducible character degrees of a nonsolvable group that has a composition factor isomorphic to PSL$_2 (q)$ for $q \ge 7$.},
author = {Lewis, Mark L., Liu, Yanjun, Tong-Viet, Hung P.},
journal = {Czechoslovak Mathematical Journal},
keywords = {character degrees; prime divisors},
language = {eng},
number = {4},
pages = {921-941},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL$_2(q)$ for $q\ge 7$},
url = {http://eudml.org/doc/294463},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Lewis, Mark L.
AU - Liu, Yanjun
AU - Tong-Viet, Hung P.
TI - Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL$_2(q)$ for $q\ge 7$
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 4
SP - 921
EP - 941
AB - Let $G$ be a finite group and write ${\rm cd} (G)$ for the degree set of the complex irreducible characters of $G$. The group $G$ is said to satisfy the two-prime hypothesis if for any distinct degrees $a, b \in {\rm cd} (G)$, the total number of (not necessarily different) primes of the greatest common divisor $\gcd (a, b)$ is at most $2$. We prove an upper bound on the number of irreducible character degrees of a nonsolvable group that has a composition factor isomorphic to PSL$_2 (q)$ for $q \ge 7$.
LA - eng
KW - character degrees; prime divisors
UR - http://eudml.org/doc/294463
ER -
References
top- Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A., Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford University Press, Eynsham (1985). (1985) Zbl0568.20001MR0827219
- The GAP Group, GAP -- Groups, Algorithms, and Programming, Version 4.8.4, Available at http://www.gap-system.org (2016). (2016)
- Giudici, M., Maximal subgroups of almost simple groups with socle , Available at arXiv:math/0703685.
- Hamblin, J., 10.1007/s10468-006-9032-3, Algebr. Represent. Theory 10 (2007), 1-24. (2007) Zbl1120.20008MR2292268DOI10.1007/s10468-006-9032-3
- Hamblin, J., Lewis, M. L., 10.1007/s10468-011-9281-7, Algebr. Represent. Theory 15 (2012), 1099-1130. (2012) Zbl1267.20012MR2994018DOI10.1007/s10468-011-9281-7
- Huppert, B., 10.1007/978-3-642-64981-3, Springer, Berlin (1967), German. (1967) Zbl0217.07201MR0224703DOI10.1007/978-3-642-64981-3
- Huppert, B., Blackburn, N., 10.1007/978-3-642-67994-0, Springer, Berlin (1982). (1982) Zbl0477.20001MR0650245DOI10.1007/978-3-642-67994-0
- Isaacs, I. M., 10.2307/2373731, Am. J. Math. 95 (1973), 594-635. (1973) Zbl0277.20008MR0332945DOI10.2307/2373731
- Isaacs, I. M., Character Theory of Finite Groups, Pure and Applied Mathematics 69. Academic Press, New York (1976). (1976) Zbl0337.20005MR0460423
- Lewis, M. L., Liu, Y., 10.1007/s00605-015-0839-z, Monatsh. Math. 181 (2016), 855-867. (2016) Zbl06655173MR3563303DOI10.1007/s00605-015-0839-z
- Lewis, M. L., Liu, Y., Tong-Viet, H. P., 10.1007/s00605-016-0954-5, Monatsh. Math. 184 (2017), 115-131. (2017) Zbl1378.20009MR3683947DOI10.1007/s00605-016-0954-5
- White, D. L., 10.1515/jgt-2012-0026, J. Group Theory 16 (2013), 1-33. (2013) Zbl1294.20014MR3008309DOI10.1515/jgt-2012-0026
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.