Piecewise-polynomial signal segmentation using convex optimization
Pavel Rajmic; Michaela Novosadová; Marie Daňková
Kybernetika (2017)
- Volume: 53, Issue: 6, page 1131-1149
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topRajmic, Pavel, Novosadová, Michaela, and Daňková, Marie. "Piecewise-polynomial signal segmentation using convex optimization." Kybernetika 53.6 (2017): 1131-1149. <http://eudml.org/doc/294464>.
@article{Rajmic2017,
abstract = {A method is presented for segmenting one-dimensional signal whose independent segments are modeled as polynomials, and which is corrupted by additive noise. The method is based on sparse modeling, the main part is formulated as a convex optimization problem and is solved by a proximal splitting algorithm. We perform experiments on simulated and real data and show that the method is capable of reliably finding breakpoints in the signal, but requires careful tuning of the regularization parameters and internal parameters. Finally, potential extensions are discussed.},
author = {Rajmic, Pavel, Novosadová, Michaela, Daňková, Marie},
journal = {Kybernetika},
keywords = {signal segmentation; denoising; sparsity; piecewise-polynomial signal model; convex optimization},
language = {eng},
number = {6},
pages = {1131-1149},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Piecewise-polynomial signal segmentation using convex optimization},
url = {http://eudml.org/doc/294464},
volume = {53},
year = {2017},
}
TY - JOUR
AU - Rajmic, Pavel
AU - Novosadová, Michaela
AU - Daňková, Marie
TI - Piecewise-polynomial signal segmentation using convex optimization
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 6
SP - 1131
EP - 1149
AB - A method is presented for segmenting one-dimensional signal whose independent segments are modeled as polynomials, and which is corrupted by additive noise. The method is based on sparse modeling, the main part is formulated as a convex optimization problem and is solved by a proximal splitting algorithm. We perform experiments on simulated and real data and show that the method is capable of reliably finding breakpoints in the signal, but requires careful tuning of the regularization parameters and internal parameters. Finally, potential extensions are discussed.
LA - eng
KW - signal segmentation; denoising; sparsity; piecewise-polynomial signal model; convex optimization
UR - http://eudml.org/doc/294464
ER -
References
top- Angelosante, D., Giannakis, G. B., 10.1186/1687-6180-2012-70, EURASIP J. Advances Signal Process. 2012 (2012), 1, 1-16. DOI10.1186/1687-6180-2012-70
- Bleakley, K., Vert, J. P., The group fused Lasso for multiple change-point detection., Technical Report.
- Bruckstein, A. M., Donoho, D. L., Elad, M., 10.1137/060657704, SIAM Rev.51 (2009), 1, 34-81. MR2481111DOI10.1137/060657704
- Candes, E. J., Wakin, M. B., 10.1109/msp.2007.914731, IEEE Signal Process. Magazine 25 (2008), 2, 21-30. DOI10.1109/msp.2007.914731
- Candes, E. J., Wakin, M. B., Boyd, S. P., 10.1007/s00041-008-9045-x, J. Fourier Analysis Appl. 14 (2008), 877-905. MR2461611DOI10.1007/s00041-008-9045-x
- Chambolle, A., Pock, T., 10.1007/s10851-010-0251-1, J. Math. Imaging Vision 40 (2011), 1, 120-145. MR2782122DOI10.1007/s10851-010-0251-1
- Chartrand, R., 10.1109/icassp.2014.6853752, In: IEEE International Conference on Acoustics, Speech, and Signal Processing 2014. DOI10.1109/icassp.2014.6853752
- Combettes, P., Pesquet, J., 10.1007/978-1-4419-9569-8_10, In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering 2011, pp. 185-212. MR2858838DOI10.1007/978-1-4419-9569-8_10
- Condat, L., 10.1109/lsp.2014.2322123, Signal Process. Lett., IEEE 21 (2014), 8, 985-989. DOI10.1109/lsp.2014.2322123
- Donoho, D. L., Elad, M., 10.1073/pnas.0437847100, Proc. National Acad. Sci. 100 (2003), 5, 2197-2202. MR1963681DOI10.1073/pnas.0437847100
- Elad, M., Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing., Springer 2010. MR2677506
- Fornasier, M., ed., 10.1515/9783110226157, De Gruyter, Berlin, Boston 2010. MR2731598DOI10.1515/9783110226157
- Frecon, J., Pustelnik, N., Abry, P., Condat, L., 10.1109/tsp.2016.2516962, IEEE Trans. Signal Process. 64 (2016), 9, 2355-2364. MR3480014DOI10.1109/tsp.2016.2516962
- Giryes, R., Elad, M., Bruckstein, A. M., 10.1137/140998585, SIAM J. Imaging Sci. 8 (2015), 3, 2133-2159. MR3402782DOI10.1137/140998585
- Nettest, GN, Understanding OTDR., GN Nettest (2000).
- Golub, G. H., Loan, C. F. V., Matrix Computations. Third edition., Johns Hopkins University Press 1996. MR1417720
- Kim, S. J., Koh, K., Boyd, S., Gorinevsky, D., 10.1137/070690274, SIAM Rev. 51 (2009), 2, 339-360. MR2505584DOI10.1137/070690274
- Komodakis, N., Pesquet, J., 10.1109/msp.2014.2377273, IEEE Signal Process. Magazine 32 (2015), 6, 31-54. DOI10.1109/msp.2014.2377273
- Kowalski, M., 10.1016/j.acha.2009.05.006, Applied Comput. Harmonic Analysis 27 (2009), 3, 303-324. MR2559729DOI10.1016/j.acha.2009.05.006
- Kowalski, M., Torrésani, B., Structured Sparsity: from Mixed Norms to Structured Shrinkage., In: SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations (R. Gribonval, ed.), Inria Rennes - Bretagne Atlantique 2009, pp. 1-6.
- Kutyniok, G., Lim, W. Q., 10.1016/j.jat.2011.06.005, J. Approx. Theory 163 (2011), 11, 1564-1589. MR2832720DOI10.1016/j.jat.2011.06.005
- Levin, D., 10.1007/s10543-014-0522-0, BIT Numerical Math. 55 (2015), 3, 781-796. MR3401813DOI10.1007/s10543-014-0522-0
- Neubauer, J., Veselý, V., 10.1049/pbce065e_ch7, Informatica 22 (2011), 1, 149-164. MR2885664DOI10.1049/pbce065e_ch7
- Novosadová, M., Rajmic, P., 10.1109/icumt.2016.7765379, In: Proc. 8th International Congress on Ultra Modern Telecommunications and Control Systems, Lisabon 2016, pp. 317-322. DOI10.1109/icumt.2016.7765379
- Novosadová, M., Rajmic, P., 10.1109/tsp.2017.8076092, In: Proc. 40th International Conference on Telecommunications and Signal Processing (TSP), Barcelona 2017, pp. 769-774. DOI10.1109/tsp.2017.8076092
- Šorel, M., Šroubek, F., 10.1016/j.dsp.2016.04.012, Digital Signal Process. 55 (2016), 44-51. DOI10.1016/j.dsp.2016.04.012
- Perraudin, N., Shuman, D. I., Puy, G., Vandergheynst, P., Unlocbox A Matlab convex optimization toolbox using proximal splitting methods (2014).
- Pock, T., Fast Total Variation for Computer Vision., Dissertation Thesis, Graz University of Technology 2008.
- Rajmic, P., 10.1109/icecs.2003.1301820, In: Electronics, Circuits and Systems, 2003. ICECS 2003. Proc. 10th IEEE International Conference 2 (2003), pp. 455-458. DOI10.1109/icecs.2003.1301820
- Rajmic, P., Novosadová, M., 10.1109/tsp.2016.7760941, In: Proc. 39th International Conference on Telecommunications and Signal Processing, Brno University of Technology 2016, pp. 550-554. DOI10.1109/tsp.2016.7760941
- Selesnick, I. W., Arnold, S., Dantham, V. R., 10.1109/tsp.2012.2214219, IEEE Trans. Signal Process. 60 (2012), 12, 6305-6318. MR3006421DOI10.1109/tsp.2012.2214219
- Shem-Tov, S., Rosman, G., Adiv, G., Kimmel, R., Bruckstein, A. M., 10.1007/978-3-642-34141-0_17, In: Mathematics and Visualization, Springer 2012, pp. 379-405. MR3075841DOI10.1007/978-3-642-34141-0_17
- Starck, J. L., Candes, E. J., Donoho, D. L., 10.1109/tip.2002.1014998, IEEE Trans. Image Process. 11 (2002), 6, 670-684. MR1929403DOI10.1109/tip.2002.1014998
- Tibshirani, R., Regression shrinkage and selection via the LASSO., J. Royal Statist. Soc. Ser. B (Methodological) 58 (1996), 1, 267-288. MR1379242
- Tibshirani, R. J., 10.1214/13-aos1189, Ann. Statist. 42 (2014), 1, 285-323. MR3189487DOI10.1214/13-aos1189
- Tropp, J., 10.1109/tit.2004.834793, IEEE Trans. Inform. Theory 50 (2004), 2231-2242. MR2097044DOI10.1109/tit.2004.834793
- Zhang, B., Geng, J., Lai, L., 10.1109/tsp.2015.2411220, IEEE Trans. Signal Process. 63 (2015), 9, 2209-2224. MR3331995DOI10.1109/tsp.2015.2411220
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.