Routh-type model reduction revisited
Wiesław Krajewski; Umberto Viaro
Kybernetika (2018)
- Volume: 54, Issue: 3, page 557-575
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKrajewski, Wiesław, and Viaro, Umberto. "Routh-type $L_2$ model reduction revisited." Kybernetika 54.3 (2018): 557-575. <http://eudml.org/doc/294471>.
@article{Krajewski2018,
abstract = {A computationally simple method for generating reduced-order models that minimise the $L_2$ norm of the approximation error while preserving a number of second-order information indices as well as the steady-state value of the step response, is presented. The method exploits the energy-conservation property peculiar to the Routh reduction method and the interpolation property of the $L_2$-optimal approximation. Two examples taken from the relevant literature show that the suggested techniques may lead to approximations that are not worse than those afforded by popular more cumbersome techniques.},
author = {Krajewski, Wiesław, Viaro, Umberto},
journal = {Kybernetika},
keywords = {model reduction; $L_2$ norm; Routh approximation; steady–state response},
language = {eng},
number = {3},
pages = {557-575},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Routh-type $L_2$ model reduction revisited},
url = {http://eudml.org/doc/294471},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Krajewski, Wiesław
AU - Viaro, Umberto
TI - Routh-type $L_2$ model reduction revisited
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 3
SP - 557
EP - 575
AB - A computationally simple method for generating reduced-order models that minimise the $L_2$ norm of the approximation error while preserving a number of second-order information indices as well as the steady-state value of the step response, is presented. The method exploits the energy-conservation property peculiar to the Routh reduction method and the interpolation property of the $L_2$-optimal approximation. Two examples taken from the relevant literature show that the suggested techniques may lead to approximations that are not worse than those afforded by popular more cumbersome techniques.
LA - eng
KW - model reduction; $L_2$ norm; Routh approximation; steady–state response
UR - http://eudml.org/doc/294471
ER -
References
top- Alsmadi, O.M.K., Abo-Hammour, Z.S., 10.1155/2015/615079, Computational Intelligence and Neuroscience 2015 (2015), 1-9. DOI10.1155/2015/615079
- Astolfi, A., 10.1109/tac.2010.2046044, IEEE Trans. Automat. Contr. 55 (2010), 2321-2336. MR2742223DOI10.1109/tac.2010.2046044
- Barnett, S., Šiljac, D. D., 10.1137/1019070, SIAM Review 19 (1977), 472-489. MR0446660DOI10.1137/1019070
- Baur, U., Beattie, C., Benner, P., Gugercin, S., 10.1137/090776925, SIAM J. Scientific Computing 33 (2011), 2489-2518. MR2861634DOI10.1137/090776925
- Bistritz, Y., 10.1109/tcsi.2013.2246232, IEEE Trans. Circuits Syst. I 60 (2013), 2453-2464. MR3105256DOI10.1109/tcsi.2013.2246232
- Beghi, A., Lepschy, A., Viaro, U., 10.1109/9.362839, IEEE Trans. Automat. Control 39 (1994), 2494-2496. MR1337580DOI10.1109/9.362839
- Benner, P., Grundel, S., Hornung, N., 10.1007/s10444-015-9410-7, Adv. Comput. Math. 41 (2015), 5, 1231-1253. MR3428565DOI10.1007/s10444-015-9410-7
- Bultheel, A., Moor, B. De, 10.1016/s0377-0427(00)00339-3, J. Comput. Appl. Math. 121 (2000), 355-378. MR1780055DOI10.1016/s0377-0427(00)00339-3
- Bultheel, A., Barel, M. Van, 10.1016/0377-0427(86)90076-2, J. Comput. Appl. Math. 14 (1986), 401-438. MR0831083DOI10.1016/0377-0427(86)90076-2
- Chahlaoui, Y., Dooren, P. Van, A collection of benchmark examples for model reduction of linear time invariant dynamical systems., SLICOT Working Note 2002-2: http://slicot.org/20-site/126-benchmark-examples-for-model-reduction. (2002).
- Desai, S. R., Prasad, R., 10.1080/21642583.2013.804463, Systems Science Control Engineering: An Open Access J. 1 (2013), 20-27. DOI10.1080/21642583.2013.804463
- Desai, S. R., Prasad, R., Generating lower order systems using modified truncation and PSO., Int. J. Computer Appl. 12 (2013), 17-21.
- Dorato, P., Lepschy, A., Viaro, U., 10.1109/13.312135, IEEE Trans. Education 37 (1994), 264-268. DOI10.1109/13.312135
- Ferrante, A., Krajewski, W., Lepschy, A., Viaro, U., 10.1016/s0005-1098(98)00142-3, Automatica 35 (1999), 75-79. DOI10.1016/s0005-1098(98)00142-3
- Fortuna, L., Nunnari, G., Gallo, A., 10.1007/978-1-4471-3198-4, Springer-Verlag, London 1992. DOI10.1007/978-1-4471-3198-4
- Fuhrmann, P. A., 10.1016/0024-3795(91)90025-r, Linear Algebra Appl. 146 (1991), 133-220. MR1083469DOI10.1016/0024-3795(91)90025-r
- Gawronski, W. K., 10.1016/0024-3795(91)90025-r, Springer, New York, 1998. MR1641222DOI10.1016/0024-3795(91)90025-r
- Glover, K., 10.1080/00207178408933239, Int. J. Control 39 (1984), 1115-1193. MR0748558DOI10.1080/00207178408933239
- Gu, G., 10.1080/00207170500110988, Int. J. Control 78 (2005), 408-423. MR2147650DOI10.1080/00207170500110988
- Gugercin, S., Antoulas, A., 10.1080/00207170410001713448, Int. J. Control 77 (2004), 748-766. MR2072207DOI10.1080/00207170410001713448
- Gugercin, S., Antoulas, A., Beattie, C., A rational Krylov iteration for optimal model reduction., Proc. 17th Int. Symp. Mathematical Theory of Networks and Systems, Kyoto 2006, pp. 1665-1667.
- Gugercin, S., Antoulas, A., Beattie, C., 10.1137/060666123, SIAM J. Matrix Analysis Appl. 30 (2008), 609-638. MR2421462DOI10.1137/060666123
- Gugercin, S., Polyuga, R. V., Beattie, C., Schaft, A. van der, 10.1016/j.automatica.2012.05.052, Automatica 48 (2012), 1963-1974. MR2956873DOI10.1016/j.automatica.2012.05.052
- Huang, X. X., Yan, W. Y., Teo, K. L., 10.1109/9.940934, IEEE Trans. Automat. Control 46 (2001), 1279-1284. MR1847334DOI10.1109/9.940934
- Hutton, M. F., Friedland, B., 10.1109/tac.1975.1100953, IEEE Trans. Automat. Control 20 (1975), 329-337. MR0439332DOI10.1109/tac.1975.1100953
- Jeltsch, R., Mansour, M., eds, 10.1007/978-3-0348-9208-7, Birkhäuser, Basel, Switzerland, 1996. MR1416358DOI10.1007/978-3-0348-9208-7
- King, A. M., Desai, U. B., Skelton, R. E., 10.1016/0005-1098(88)90095-7, Automatica 24 (1988), 507-515. MR0956572DOI10.1016/0005-1098(88)90095-7
- Krajewski, W., Lepschy, A., Viaro, U., Compact form of the optimality conditions for multivariable model reduction., Atti Ist. Veneto SS.LL.AA.: Classe di Scienze Fisiche, Matematiche e Naturali Tomo CL (1991/92) (1992), 119-128. MR1261290
- Krajewski, W., Lepschy, A., Mian, G. A., Viaro, U., 10.1016/0016-0032(93)90090-h, J. Franklin Inst. 330 (1993), 431-439. MR1216978DOI10.1016/0016-0032(93)90090-h
- Krajewski, W., Lepschy, A., Viaro, U., Remarks on algorithms for model reduction., Atti Ist. Veneto SS.LL.AA.: Classe di Scienze Fisiche, Matematiche e Naturali Tomo CLII (1993/1994) (1994), 99-106. MR1353809
- Krajewski, W., Lepschy, A., Viaro, U., 10.1109/9.328814, IEEE Trans. Automat. Control 39 (1994), 2126-2129. MR1295743DOI10.1109/9.328814
- Krajewski, W., Lepschy, A., Viaro, U., 10.1109/9.384238, IEEE Trans. Automat. Contr. 40, 949-953. MR1328099DOI10.1109/9.384238
- Krajewski, W., Lepschy, A., Redivo-Zaglia, M., Viaro, U., 10.1007/bf02141596, Numerical Algorithms 9 (1995), 355-377. MR1339727DOI10.1007/bf02141596
- Krajewski, W., Viaro, U., 10.1007/s11075-007-9086-2, Numerical Algorithms 44 (2007), 83-98. MR2322146DOI10.1007/s11075-007-9086-2
- Krajewski, W., Viaro, U., Iterative-interpolation algorithms for model reduction., Control and Cybernetics 38 (2009), 543-554. MR2591289
- Krishnamurthy, V., Seshadri, V., 10.1109/tac.1978.1101805, IEEE Trans. Automat. Contr. 23 (1978), 729-731. DOI10.1109/tac.1978.1101805
- Lepschy, A., Mian, G. A., Viaro, U., 10.1016/0016-0032(88)90003-8, J. Franklin Inst. 325 (1988, 695-703. MR0971159DOI10.1016/0016-0032(88)90003-8
- Lepschy, A., Mian, G. A., Viaro, U., 10.1080/00207178908953495, Int. J. Control 50 (1989), 2237-2247. DOI10.1080/00207178908953495
- Luenberger, D. G., 10.1137/1012072, Wiley, New York 1969. MR0238472DOI10.1137/1012072
- Meier, L., Luenberger, D. G., 10.1109/tac.1967.1098680, IEEE Trans. Automat. Contr. 12 (1967), 585-588. DOI10.1109/tac.1967.1098680
- Mi, W., Qian, T., Wan, F., 10.1016/j.sysconle.2011.10.016, Systems Control Lett. 61 (2012), 223-230. MR2878709DOI10.1016/j.sysconle.2011.10.016
- Mittal, S. K., Chandra, D., Dwivedi, B., A computer-aided approach for Routh-Padé approximation of SISO systems based on multi-objective optimization., Int. J. Eng. Technol. 2 (2010), 204-210. MR2579902
- Moore, B. C., 10.1109/tac.1981.1102568, IEEE Trans. Automat. Control 26 (1981), 17-32. MR0609248DOI10.1109/tac.1981.1102568
- Mukherjee, S., Satakshi, Mittal, R .C., 10.1016/j.jfranklin.2005.01.008, J. Franklin Inst. 342 (2005), 503-519. MR2150730DOI10.1016/j.jfranklin.2005.01.008
- Mullis, C. T., Roberts, R. A., 10.1109/tassp.1976.1162795, IEEE Trans. Acoust. Speech Signal Process. 24 (1976), 226-238. MR0497017DOI10.1109/tassp.1976.1162795
- Pan, V.Y., 10.1137/s0036144595288554, SIAM Rev. 39 (1997), 187-220. MR1453318DOI10.1137/s0036144595288554
- Panda, S., Tomar, S. K., Prasad, R., Ardil, C., Reduction of linear time-invariant systems using Routh-approximation and PSO., Int. J. Electrical Computer Electronics and Communication Eng. 3 (2009), 20-27. MR2482061
- Parmar, G., Mukherjee, S., Prasad, R., 10.1016/j.apm.2006.10.004, Appl. Math. Modelling 31 (2007), 2542-2552. Zbl1118.93028DOI10.1016/j.apm.2006.10.004
- Petersson, D., Löfberg, J., 10.1016/j.sysconle.2014.02.004, Systems Control Lett. 67 (2012), 32-39. MR3183378DOI10.1016/j.sysconle.2014.02.004
- Qiu, L., 10.1007/s11768-003-0003-5, J. Contr. Theory Appl. 1 (2003), 9-16. MR2093619DOI10.1007/s11768-003-0003-5
- Ramawat, K., Kumar, A., 10.5120/19943-1737, Int. J. Computer Appl. 114 (2015), 24-285. DOI10.5120/19943-1737
- Rana, J. S., Prasad, R., Singh, R., Order reduction using modified pole clustering and factor division method., Int. J. Innovative Tech. Exploring Eng. 3 (2014), 134-136.
- Ryaben'kii, V. S., Tsynkov, S. V., A Theoretical Introduction to Numerical Analysis., Chapman and Hall/CRC (Taylor and Francis Group), Boca Raton 2006.
- Rydel, M., Stanisławski, W., 10.1109/mmar.2015.7283941, In: Proc. IEEE Int. Conf. Methods and Models in Automation and Robotics, Miedzyzdroje 2015. DOI10.1109/mmar.2015.7283941
- Saini, D. K., Prasad, R., Order reduction of linear interval systems using genetic algorithm., Int. J. Eng. Technol. 2 (2010), 316-319.
- Sikander, A., Prasad, R., 10.1080/03772063.2015.1009396, IETE J. Research 61 (2015), 83-90. DOI10.1080/03772063.2015.1009396
- Sikander, A., Prasad, R., 10.1016/j.apm.2015.04.014, Appl. Math. Modelling 39 (2015), 4848-4858. MR3354872DOI10.1016/j.apm.2015.04.014
- Soh, C. B., 10.1109/9.45186, IEEE Trans. Automat. Control 35 (1990), 222-225. MR1038425DOI10.1109/9.45186
- Soloklo, H. N., Farsangi, M. M., Order reduction by minimizing integral square error and norm of error., J. Adv. Computer Res. 5 (2014), 29-42.
- Sreeram, V., Agathoklis, P., 10.1080/00207179108953613, Int. J. Control 53 (1991), 129-144. MR1085103DOI10.1080/00207179108953613
- Tanguy, N., Iassamen, N., Telescu, M., Cloastre, P., 10.1016/j.apm.2015.04.017, Appl. Math. Modelling 39 (2015), 4963-4970. MR3354880DOI10.1016/j.apm.2015.04.017
- Dooren, P. Van, Gallivan, K. A., Absil, P. A., 10.1016/j.aml.2007.09.015, Appl. Math. Lett. 21 (2008), 1267-1273. MR2464378DOI10.1016/j.aml.2007.09.015
- Varga, A., Anderson, B. D. O., 10.1016/s0005-1098(03)00030-x, Automatica 39 (2003), 919-927. MR2138365DOI10.1016/s0005-1098(03)00030-x
- Viaro, U., Stability tests revisited., In: A Tribute to Antonio Lepschy (G. Picci and M. E. Valcher, eds.), Edizioni Libreria Progetto, Padova 2007, pp. 189-199.
- Vishwakarma, C.B., Prasad, R., Order reduction using the advantages of differentiation method and factor division algorithm., Indian J. Engineering & Materials Sciences 15 (2008), 447-451.
- Xu, Y., Zeng, T., Optimal model reduction for large scale MIMO systems via tangential interpolation., Int. J. Numerical Analysis and Modeling 8 (2011), 174-188. MR2740486
- Wang, Y., Bernstein, D. S., Watson, L. T., 10.1016/s0096-3003(00)00059-x, Appl. Math Comput. 123 (2001), 155-185. MR1847909DOI10.1016/s0096-3003(00)00059-x
- Yan, W. Y., Lam, J., 10.1109/9.774107, IEEE Trans. Automat. Control 44 (1999), 1341-1358. MR1697424DOI10.1109/9.774107
- Zeng, C., Chen, Y. Q., 10.1515/fca-2015-0086, Fractional Calculus and Applied Analysis (arXiv:1310.5592) 18 (2015), 1-15. MR3433025DOI10.1515/fca-2015-0086
- Zeng, T., Lu, C., 10.1515/fca-2015-0086, Int. J. Numerical Methods Engrg. 104 (2015), 10, 928-943. MR3416241DOI10.1515/fca-2015-0086
- Ziegler, J. G., Nichols, N. B., 10.1109/tit.1972.1054906, Trans. ASME 64 (1942), 759-765. DOI10.1109/tit.1972.1054906
- Žigić, D., Watson, L. T., Collins, E. G., Jr., Bernstein, D. S., 10.1080/00207179208934308, Int. J. Control 56 (1992), 173-191. MR1170891DOI10.1080/00207179208934308
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.