Routh-type L 2 model reduction revisited

Wiesław Krajewski; Umberto Viaro

Kybernetika (2018)

  • Volume: 54, Issue: 3, page 557-575
  • ISSN: 0023-5954

Abstract

top
A computationally simple method for generating reduced-order models that minimise the L 2 norm of the approximation error while preserving a number of second-order information indices as well as the steady-state value of the step response, is presented. The method exploits the energy-conservation property peculiar to the Routh reduction method and the interpolation property of the L 2 -optimal approximation. Two examples taken from the relevant literature show that the suggested techniques may lead to approximations that are not worse than those afforded by popular more cumbersome techniques.

How to cite

top

Krajewski, Wiesław, and Viaro, Umberto. "Routh-type $L_2$ model reduction revisited." Kybernetika 54.3 (2018): 557-575. <http://eudml.org/doc/294471>.

@article{Krajewski2018,
abstract = {A computationally simple method for generating reduced-order models that minimise the $L_2$ norm of the approximation error while preserving a number of second-order information indices as well as the steady-state value of the step response, is presented. The method exploits the energy-conservation property peculiar to the Routh reduction method and the interpolation property of the $L_2$-optimal approximation. Two examples taken from the relevant literature show that the suggested techniques may lead to approximations that are not worse than those afforded by popular more cumbersome techniques.},
author = {Krajewski, Wiesław, Viaro, Umberto},
journal = {Kybernetika},
keywords = {model reduction; $L_2$ norm; Routh approximation; steady–state response},
language = {eng},
number = {3},
pages = {557-575},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Routh-type $L_2$ model reduction revisited},
url = {http://eudml.org/doc/294471},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Krajewski, Wiesław
AU - Viaro, Umberto
TI - Routh-type $L_2$ model reduction revisited
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 3
SP - 557
EP - 575
AB - A computationally simple method for generating reduced-order models that minimise the $L_2$ norm of the approximation error while preserving a number of second-order information indices as well as the steady-state value of the step response, is presented. The method exploits the energy-conservation property peculiar to the Routh reduction method and the interpolation property of the $L_2$-optimal approximation. Two examples taken from the relevant literature show that the suggested techniques may lead to approximations that are not worse than those afforded by popular more cumbersome techniques.
LA - eng
KW - model reduction; $L_2$ norm; Routh approximation; steady–state response
UR - http://eudml.org/doc/294471
ER -

References

top
  1. Alsmadi, O.M.K., Abo-Hammour, Z.S., 10.1155/2015/615079, Computational Intelligence and Neuroscience 2015 (2015), 1-9. DOI10.1155/2015/615079
  2. Astolfi, A., 10.1109/tac.2010.2046044, IEEE Trans. Automat. Contr. 55 (2010), 2321-2336. MR2742223DOI10.1109/tac.2010.2046044
  3. Barnett, S., Šiljac, D. D., 10.1137/1019070, SIAM Review 19 (1977), 472-489. MR0446660DOI10.1137/1019070
  4. Baur, U., Beattie, C., Benner, P., Gugercin, S., 10.1137/090776925, SIAM J. Scientific Computing 33 (2011), 2489-2518. MR2861634DOI10.1137/090776925
  5. Bistritz, Y., 10.1109/tcsi.2013.2246232, IEEE Trans. Circuits Syst. I 60 (2013), 2453-2464. MR3105256DOI10.1109/tcsi.2013.2246232
  6. Beghi, A., Lepschy, A., Viaro, U., 10.1109/9.362839, IEEE Trans. Automat. Control 39 (1994), 2494-2496. MR1337580DOI10.1109/9.362839
  7. Benner, P., Grundel, S., Hornung, N., 10.1007/s10444-015-9410-7, Adv. Comput. Math. 41 (2015), 5, 1231-1253. MR3428565DOI10.1007/s10444-015-9410-7
  8. Bultheel, A., Moor, B. De, 10.1016/s0377-0427(00)00339-3, J. Comput. Appl. Math. 121 (2000), 355-378. MR1780055DOI10.1016/s0377-0427(00)00339-3
  9. Bultheel, A., Barel, M. Van, 10.1016/0377-0427(86)90076-2, J. Comput. Appl. Math. 14 (1986), 401-438. MR0831083DOI10.1016/0377-0427(86)90076-2
  10. Chahlaoui, Y., Dooren, P. Van, A collection of benchmark examples for model reduction of linear time invariant dynamical systems., SLICOT Working Note 2002-2: http://slicot.org/20-site/126-benchmark-examples-for-model-reduction. (2002). 
  11. Desai, S. R., Prasad, R., 10.1080/21642583.2013.804463, Systems Science Control Engineering: An Open Access J. 1 (2013), 20-27. DOI10.1080/21642583.2013.804463
  12. Desai, S. R., Prasad, R., Generating lower order systems using modified truncation and PSO., Int. J. Computer Appl. 12 (2013), 17-21. 
  13. Dorato, P., Lepschy, A., Viaro, U., 10.1109/13.312135, IEEE Trans. Education 37 (1994), 264-268. DOI10.1109/13.312135
  14. Ferrante, A., Krajewski, W., Lepschy, A., Viaro, U., 10.1016/s0005-1098(98)00142-3, Automatica 35 (1999), 75-79. DOI10.1016/s0005-1098(98)00142-3
  15. Fortuna, L., Nunnari, G., Gallo, A., 10.1007/978-1-4471-3198-4, Springer-Verlag, London 1992. DOI10.1007/978-1-4471-3198-4
  16. Fuhrmann, P. A., 10.1016/0024-3795(91)90025-r, Linear Algebra Appl. 146 (1991), 133-220. MR1083469DOI10.1016/0024-3795(91)90025-r
  17. Gawronski, W. K., 10.1016/0024-3795(91)90025-r, Springer, New York, 1998. MR1641222DOI10.1016/0024-3795(91)90025-r
  18. Glover, K., 10.1080/00207178408933239, Int. J. Control 39 (1984), 1115-1193. MR0748558DOI10.1080/00207178408933239
  19. Gu, G., 10.1080/00207170500110988, Int. J. Control 78 (2005), 408-423. MR2147650DOI10.1080/00207170500110988
  20. Gugercin, S., Antoulas, A., 10.1080/00207170410001713448, Int. J. Control 77 (2004), 748-766. MR2072207DOI10.1080/00207170410001713448
  21. Gugercin, S., Antoulas, A., Beattie, C., A rational Krylov iteration for optimal H 2 model reduction., Proc. 17th Int. Symp. Mathematical Theory of Networks and Systems, Kyoto 2006, pp. 1665-1667. 
  22. Gugercin, S., Antoulas, A., Beattie, C., 10.1137/060666123, SIAM J. Matrix Analysis Appl. 30 (2008), 609-638. MR2421462DOI10.1137/060666123
  23. Gugercin, S., Polyuga, R. V., Beattie, C., Schaft, A. van der, 10.1016/j.automatica.2012.05.052, Automatica 48 (2012), 1963-1974. MR2956873DOI10.1016/j.automatica.2012.05.052
  24. Huang, X. X., Yan, W. Y., Teo, K. L., 10.1109/9.940934, IEEE Trans. Automat. Control 46 (2001), 1279-1284. MR1847334DOI10.1109/9.940934
  25. Hutton, M. F., Friedland, B., 10.1109/tac.1975.1100953, IEEE Trans. Automat. Control 20 (1975), 329-337. MR0439332DOI10.1109/tac.1975.1100953
  26. Jeltsch, R., Mansour, M., eds, 10.1007/978-3-0348-9208-7, Birkhäuser, Basel, Switzerland, 1996. MR1416358DOI10.1007/978-3-0348-9208-7
  27. King, A. M., Desai, U. B., Skelton, R. E., 10.1016/0005-1098(88)90095-7, Automatica 24 (1988), 507-515. MR0956572DOI10.1016/0005-1098(88)90095-7
  28. Krajewski, W., Lepschy, A., Viaro, U., Compact form of the optimality conditions for multivariable L 2 model reduction., Atti Ist. Veneto SS.LL.AA.: Classe di Scienze Fisiche, Matematiche e Naturali Tomo CL (1991/92) (1992), 119-128. MR1261290
  29. Krajewski, W., Lepschy, A., Mian, G. A., Viaro, U., 10.1016/0016-0032(93)90090-h, J. Franklin Inst. 330 (1993), 431-439. MR1216978DOI10.1016/0016-0032(93)90090-h
  30. Krajewski, W., Lepschy, A., Viaro, U., Remarks on algorithms for L 2 model reduction., Atti Ist. Veneto SS.LL.AA.: Classe di Scienze Fisiche, Matematiche e Naturali Tomo CLII (1993/1994) (1994), 99-106. MR1353809
  31. Krajewski, W., Lepschy, A., Viaro, U., 10.1109/9.328814, IEEE Trans. Automat. Control 39 (1994), 2126-2129. MR1295743DOI10.1109/9.328814
  32. Krajewski, W., Lepschy, A., Viaro, U., 10.1109/9.384238, IEEE Trans. Automat. Contr. 40, 949-953. MR1328099DOI10.1109/9.384238
  33. Krajewski, W., Lepschy, A., Redivo-Zaglia, M., Viaro, U., 10.1007/bf02141596, Numerical Algorithms 9 (1995), 355-377. MR1339727DOI10.1007/bf02141596
  34. Krajewski, W., Viaro, U., 10.1007/s11075-007-9086-2, Numerical Algorithms 44 (2007), 83-98. MR2322146DOI10.1007/s11075-007-9086-2
  35. Krajewski, W., Viaro, U., Iterative-interpolation algorithms for L 2 model reduction., Control and Cybernetics 38 (2009), 543-554. MR2591289
  36. Krishnamurthy, V., Seshadri, V., 10.1109/tac.1978.1101805, IEEE Trans. Automat. Contr. 23 (1978), 729-731. DOI10.1109/tac.1978.1101805
  37. Lepschy, A., Mian, G. A., Viaro, U., 10.1016/0016-0032(88)90003-8, J. Franklin Inst. 325 (1988, 695-703. MR0971159DOI10.1016/0016-0032(88)90003-8
  38. Lepschy, A., Mian, G. A., Viaro, U., 10.1080/00207178908953495, Int. J. Control 50 (1989), 2237-2247. DOI10.1080/00207178908953495
  39. Luenberger, D. G., 10.1137/1012072, Wiley, New York 1969. MR0238472DOI10.1137/1012072
  40. Meier, L., Luenberger, D. G., 10.1109/tac.1967.1098680, IEEE Trans. Automat. Contr. 12 (1967), 585-588. DOI10.1109/tac.1967.1098680
  41. Mi, W., Qian, T., Wan, F., 10.1016/j.sysconle.2011.10.016, Systems Control Lett. 61 (2012), 223-230. MR2878709DOI10.1016/j.sysconle.2011.10.016
  42. Mittal, S. K., Chandra, D., Dwivedi, B., A computer-aided approach for Routh-Padé approximation of SISO systems based on multi-objective optimization., Int. J. Eng. Technol. 2 (2010), 204-210. MR2579902
  43. Moore, B. C., 10.1109/tac.1981.1102568, IEEE Trans. Automat. Control 26 (1981), 17-32. MR0609248DOI10.1109/tac.1981.1102568
  44. Mukherjee, S., Satakshi, Mittal, R .C., 10.1016/j.jfranklin.2005.01.008, J. Franklin Inst. 342 (2005), 503-519. MR2150730DOI10.1016/j.jfranklin.2005.01.008
  45. Mullis, C. T., Roberts, R. A., 10.1109/tassp.1976.1162795, IEEE Trans. Acoust. Speech Signal Process. 24 (1976), 226-238. MR0497017DOI10.1109/tassp.1976.1162795
  46. Pan, V.Y., 10.1137/s0036144595288554, SIAM Rev. 39 (1997), 187-220. MR1453318DOI10.1137/s0036144595288554
  47. Panda, S., Tomar, S. K., Prasad, R., Ardil, C., Reduction of linear time-invariant systems using Routh-approximation and PSO., Int. J. Electrical Computer Electronics and Communication Eng. 3 (2009), 20-27. MR2482061
  48. Parmar, G., Mukherjee, S., Prasad, R., 10.1016/j.apm.2006.10.004, Appl. Math. Modelling 31 (2007), 2542-2552. Zbl1118.93028DOI10.1016/j.apm.2006.10.004
  49. Petersson, D., Löfberg, J., 10.1016/j.sysconle.2014.02.004, Systems Control Lett. 67 (2012), 32-39. MR3183378DOI10.1016/j.sysconle.2014.02.004
  50. Qiu, L., 10.1007/s11768-003-0003-5, J. Contr. Theory Appl. 1 (2003), 9-16. MR2093619DOI10.1007/s11768-003-0003-5
  51. Ramawat, K., Kumar, A., 10.5120/19943-1737, Int. J. Computer Appl. 114 (2015), 24-285. DOI10.5120/19943-1737
  52. Rana, J. S., Prasad, R., Singh, R., Order reduction using modified pole clustering and factor division method., Int. J. Innovative Tech. Exploring Eng. 3 (2014), 134-136. 
  53. Ryaben'kii, V. S., Tsynkov, S. V., A Theoretical Introduction to Numerical Analysis., Chapman and Hall/CRC (Taylor and Francis Group), Boca Raton 2006. 
  54. Rydel, M., Stanisławski, W., 10.1109/mmar.2015.7283941, In: Proc. IEEE Int. Conf. Methods and Models in Automation and Robotics, Miedzyzdroje 2015. DOI10.1109/mmar.2015.7283941
  55. Saini, D. K., Prasad, R., Order reduction of linear interval systems using genetic algorithm., Int. J. Eng. Technol. 2 (2010), 316-319. 
  56. Sikander, A., Prasad, R., 10.1080/03772063.2015.1009396, IETE J. Research 61 (2015), 83-90. DOI10.1080/03772063.2015.1009396
  57. Sikander, A., Prasad, R., 10.1016/j.apm.2015.04.014, Appl. Math. Modelling 39 (2015), 4848-4858. MR3354872DOI10.1016/j.apm.2015.04.014
  58. Soh, C. B., 10.1109/9.45186, IEEE Trans. Automat. Control 35 (1990), 222-225. MR1038425DOI10.1109/9.45186
  59. Soloklo, H. N., Farsangi, M. M., Order reduction by minimizing integral square error and H norm of error., J. Adv. Computer Res. 5 (2014), 29-42. 
  60. Sreeram, V., Agathoklis, P., 10.1080/00207179108953613, Int. J. Control 53 (1991), 129-144. MR1085103DOI10.1080/00207179108953613
  61. Tanguy, N., Iassamen, N., Telescu, M., Cloastre, P., 10.1016/j.apm.2015.04.017, Appl. Math. Modelling 39 (2015), 4963-4970. MR3354880DOI10.1016/j.apm.2015.04.017
  62. Dooren, P. Van, Gallivan, K. A., Absil, P. A., 10.1016/j.aml.2007.09.015, Appl. Math. Lett. 21 (2008), 1267-1273. MR2464378DOI10.1016/j.aml.2007.09.015
  63. Varga, A., Anderson, B. D. O., 10.1016/s0005-1098(03)00030-x, Automatica 39 (2003), 919-927. MR2138365DOI10.1016/s0005-1098(03)00030-x
  64. Viaro, U., Stability tests revisited., In: A Tribute to Antonio Lepschy (G. Picci and M. E. Valcher, eds.), Edizioni Libreria Progetto, Padova 2007, pp. 189-199. 
  65. Vishwakarma, C.B., Prasad, R., Order reduction using the advantages of differentiation method and factor division algorithm., Indian J. Engineering & Materials Sciences 15 (2008), 447-451. 
  66. Xu, Y., Zeng, T., Optimal H 2 model reduction for large scale MIMO systems via tangential interpolation., Int. J. Numerical Analysis and Modeling 8 (2011), 174-188. MR2740486
  67. Wang, Y., Bernstein, D. S., Watson, L. T., 10.1016/s0096-3003(00)00059-x, Appl. Math Comput. 123 (2001), 155-185. MR1847909DOI10.1016/s0096-3003(00)00059-x
  68. Yan, W. Y., Lam, J., 10.1109/9.774107, IEEE Trans. Automat. Control 44 (1999), 1341-1358. MR1697424DOI10.1109/9.774107
  69. Zeng, C., Chen, Y. Q., 10.1515/fca-2015-0086, Fractional Calculus and Applied Analysis (arXiv:1310.5592) 18 (2015), 1-15. MR3433025DOI10.1515/fca-2015-0086
  70. Zeng, T., Lu, C., 10.1515/fca-2015-0086, Int. J. Numerical Methods Engrg. 104 (2015), 10, 928-943. MR3416241DOI10.1515/fca-2015-0086
  71. Ziegler, J. G., Nichols, N. B., 10.1109/tit.1972.1054906, Trans. ASME 64 (1942), 759-765. DOI10.1109/tit.1972.1054906
  72. Žigić, D., Watson, L. T., Collins, E. G., Jr., Bernstein, D. S., 10.1080/00207179208934308, Int. J. Control 56 (1992), 173-191. MR1170891DOI10.1080/00207179208934308

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.