Random noise and perturbation of copulas
Radko Mesiar; Ayyub Sheikhi; Magda Komorníková
Kybernetika (2019)
- Volume: 55, Issue: 2, page 422-434
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMesiar, Radko, Sheikhi, Ayyub, and Komorníková, Magda. "Random noise and perturbation of copulas." Kybernetika 55.2 (2019): 422-434. <http://eudml.org/doc/294473>.
@article{Mesiar2019,
abstract = {For a random vector $(X,Y)$ characterized by a copula $C_\{X,Y\}$ we study its perturbation $C_\{X+Z,Y\}$ characterizing the random vector $(X+Z,Y)$ affected by a noise $Z$ independent of both $X$ and $Y$. Several examples are added, including a new comprehensive parametric copula family $\left(\mathcal \{C\}_k \right) _\{k \in [-\infty , \infty ]\}$.},
author = {Mesiar, Radko, Sheikhi, Ayyub, Komorníková, Magda},
journal = {Kybernetika},
keywords = {copula; noise; perturbation of copula; random vector},
language = {eng},
number = {2},
pages = {422-434},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Random noise and perturbation of copulas},
url = {http://eudml.org/doc/294473},
volume = {55},
year = {2019},
}
TY - JOUR
AU - Mesiar, Radko
AU - Sheikhi, Ayyub
AU - Komorníková, Magda
TI - Random noise and perturbation of copulas
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 2
SP - 422
EP - 434
AB - For a random vector $(X,Y)$ characterized by a copula $C_{X,Y}$ we study its perturbation $C_{X+Z,Y}$ characterizing the random vector $(X+Z,Y)$ affected by a noise $Z$ independent of both $X$ and $Y$. Several examples are added, including a new comprehensive parametric copula family $\left(\mathcal {C}_k \right) _{k \in [-\infty , \infty ]}$.
LA - eng
KW - copula; noise; perturbation of copula; random vector
UR - http://eudml.org/doc/294473
ER -
References
top- Cherubini, U., Gobbi, F., Mulinacci, S., 10.1007/978-3-319-48015-2, Springer-Briefs in Statistics 2016. MR3586607DOI10.1007/978-3-319-48015-2
- Durante, F., Sempi, C., 10.1201/b18674, CRC Chapman and Hall, Boca Raton 2016. MR3443023DOI10.1201/b18674
- Gijbels, I., Herrmann, K., 10.1016/j.insmatheco.2014.08.002, Insurance Math. Econom. 59 (2014), C, 27-44. MR3283206DOI10.1016/j.insmatheco.2014.08.002
- Joe, H., 10.1201/b13150, Chapman and Hall 1997. Zbl0990.62517MR1462613DOI10.1201/b13150
- Nelsen, R. B., 10.1007/0-387-28678-0, Springer Series in Statistics, Springer-Verlag, New York 2006. MR2197664DOI10.1007/0-387-28678-0
- Sklar, A., Fonctions de répartition a n dimensions et leurs marges., Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231. MR0125600
- Wang, R., 10.1214/ejp.v19-3373, Electron. J. Probab. 19 (2014), 84, 1-18. MR3263641DOI10.1214/ejp.v19-3373
- Williamson, R. C., Downs, R. C., 10.1016/0888-613x(90)90022-t, Int. J. Approx. Reason. 4 (2014), 89-158. MR1042207DOI10.1016/0888-613x(90)90022-t
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.