Sharp eigenvalue estimates of closed -hypersurfaces in locally symmetric spaces
Eudes L. de Lima; Henrique F. de Lima; Fábio R. dos Santos; Marco A. L. Velásquez
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 4, page 969-981
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topde Lima, Eudes L., et al. "Sharp eigenvalue estimates of closed $H$-hypersurfaces in locally symmetric spaces." Czechoslovak Mathematical Journal 69.4 (2019): 969-981. <http://eudml.org/doc/294481>.
@article{deLima2019,
abstract = {The purpose of this article is to obtain sharp estimates for the first eigenvalue of the stability operator of constant mean curvature closed hypersurfaces immersed into locally symmetric Riemannian spaces satisfying suitable curvature conditions (which includes, in particular, a Riemannian space with constant sectional curvature). As an application, we derive a nonexistence result concerning strongly stable hypersurfaces in these ambient spaces.},
author = {de Lima, Eudes L., de Lima, Henrique F., dos Santos, Fábio R., Velásquez, Marco A. L.},
journal = {Czechoslovak Mathematical Journal},
keywords = {locally symmetric Riemannian space; closed $H$-hypersurface; strong stability; first stability eigenvalue},
language = {eng},
number = {4},
pages = {969-981},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sharp eigenvalue estimates of closed $H$-hypersurfaces in locally symmetric spaces},
url = {http://eudml.org/doc/294481},
volume = {69},
year = {2019},
}
TY - JOUR
AU - de Lima, Eudes L.
AU - de Lima, Henrique F.
AU - dos Santos, Fábio R.
AU - Velásquez, Marco A. L.
TI - Sharp eigenvalue estimates of closed $H$-hypersurfaces in locally symmetric spaces
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 969
EP - 981
AB - The purpose of this article is to obtain sharp estimates for the first eigenvalue of the stability operator of constant mean curvature closed hypersurfaces immersed into locally symmetric Riemannian spaces satisfying suitable curvature conditions (which includes, in particular, a Riemannian space with constant sectional curvature). As an application, we derive a nonexistence result concerning strongly stable hypersurfaces in these ambient spaces.
LA - eng
KW - locally symmetric Riemannian space; closed $H$-hypersurface; strong stability; first stability eigenvalue
UR - http://eudml.org/doc/294481
ER -
References
top- Alencar, H., Carmo, M. P. do, 10.2307/2160241, Proc. Am. Math. Soc. 120 (1994), 1223-1229. (1994) Zbl0802.53017MR1172943DOI10.2307/2160241
- Alías, L. J., Barros, A., Jr., A. Brasil, 10.1090/S0002-9939-04-07559-8, Proc. Am. Math. Soc. 133 (2005), 875-884. (2005) Zbl1065.53046MR2113939DOI10.1090/S0002-9939-04-07559-8
- Alías, L. J., Jr., A. Brasil, Perdomo, O., 10.1090/S0002-9939-07-08886-7, Proc. Am. Math. Soc. 135 (2007), 3685-3693. (2007) Zbl1157.53030MR2336585DOI10.1090/S0002-9939-07-08886-7
- Alías, L. J., Lima, H. F. de, Meléndez, J., Santos, F. R. dos, 10.1002/mana.201400296, Math. Nachr. 289 (2016), 1309-1324. (2016) Zbl1350.53078MR3541811DOI10.1002/mana.201400296
- Alías, L. J., Kurose, T., Solanes, G., 10.1016/j.difgeo.2006.02.008, Differ. Geom. Appl. 24 (2006), 492-502. (2006) Zbl1103.52006MR2254052DOI10.1016/j.difgeo.2006.02.008
- Alías, L. J., Meroño, M. A., Ortiz, I., 10.1007/s00009-014-0397-y, Mediterr. J. Math. 12 (2015), 147-158. (2015) Zbl1316.53062MR3306032DOI10.1007/s00009-014-0397-y
- Barros, A. A. de, Jr., A. C. Brasil, Jr., L. A. M. de Sousa, 10.2996/kmj/1085143788, Kodai Math. J. 27 (2004), 45-56. (2004) Zbl1059.53047MR2042790DOI10.2996/kmj/1085143788
- Gomes, J. N., Lima, H. F. de, Santos, F. R. dos, Velásquez, M. A. L., 10.1016/j.na.2015.11.026, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 133 (2016), 15-27. (2016) Zbl1333.53090MR3449745DOI10.1016/j.na.2015.11.026
- Melendéz, J., 10.1007/s00574-014-0055-9, Bull. Braz. Math. Soc. 45 (2014), 385-404. (2014) Zbl1319.53065MR3264798DOI10.1007/s00574-014-0055-9
- Meroño, M. A., Ortiz, I., 10.1016/j.jmaa.2015.10.016, J. Math. Anal. Appl. 434 (2016), 1779-1788. (2016) Zbl1328.53075MR3415751DOI10.1016/j.jmaa.2015.10.016
- Meroño, M. A., Ortiz, I., 10.1016/j.difgeo.2015.11.009, Differ. Geom. Appl. 45 (2016), 67-77. (2016) Zbl1334.53061MR3457388DOI10.1016/j.difgeo.2015.11.009
- Okumura, M., 10.2307/2373587, Am. J. Math. 96 (1974), 207-213. (1974) Zbl0302.53028MR0353216DOI10.2307/2373587
- Perdomo,, O., 10.1090/S0002-9939-02-06451-1, Proc. Am. Math. Soc. 130 (2002), 3379-3384. (2002) Zbl1014.53036MR1913017DOI10.1090/S0002-9939-02-06451-1
- Simons, J., 10.2307/1970556, Ann. Math. 88 (1968), 62-105. (1968) Zbl0181.49702MR0233295DOI10.2307/1970556
- Velásquez, M. A. L., Lima, H. F. de, Santos, F. R. dos, Aquino, C. P., 10.2989/16073606.2017.1305463, Quaest. Math. 40 (2017), 605-616. (2017) MR3691472DOI10.2989/16073606.2017.1305463
- Wu, C., 10.1007/BF01198725, Arch. Math. 61 (1993), 277-284. (1993) Zbl0791.53056MR1231163DOI10.1007/BF01198725
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.