L p harmonic 1 -form on submanifold with weighted Poincaré inequality

Xiaoli Chao; Yusha Lv

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 1, page 195-217
  • ISSN: 0011-4642

Abstract

top
We deal with complete submanifolds with weighted Poincaré inequality. By assuming the submanifold is δ -stable or has sufficiently small total curvature, we establish two vanishing theorems for L p harmonic 1 -forms, which are extensions of the results of Dung-Seo and Cavalcante-Mirandola-Vitório.

How to cite

top

Chao, Xiaoli, and Lv, Yusha. "$L^p$ harmonic $1$-form on submanifold with weighted Poincaré inequality." Czechoslovak Mathematical Journal 68.1 (2018): 195-217. <http://eudml.org/doc/294484>.

@article{Chao2018,
abstract = {We deal with complete submanifolds with weighted Poincaré inequality. By assuming the submanifold is $\delta $-stable or has sufficiently small total curvature, we establish two vanishing theorems for $L^p$ harmonic $1$-forms, which are extensions of the results of Dung-Seo and Cavalcante-Mirandola-Vitório.},
author = {Chao, Xiaoli, Lv, Yusha},
journal = {Czechoslovak Mathematical Journal},
keywords = {weighted Poincaré inequality; $\delta $-stability; $L^\{p\}$ harmonic $1$-form; property $(\mathcal \{P\}_\rho )$},
language = {eng},
number = {1},
pages = {195-217},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$L^p$ harmonic $1$-form on submanifold with weighted Poincaré inequality},
url = {http://eudml.org/doc/294484},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Chao, Xiaoli
AU - Lv, Yusha
TI - $L^p$ harmonic $1$-form on submanifold with weighted Poincaré inequality
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 195
EP - 217
AB - We deal with complete submanifolds with weighted Poincaré inequality. By assuming the submanifold is $\delta $-stable or has sufficiently small total curvature, we establish two vanishing theorems for $L^p$ harmonic $1$-forms, which are extensions of the results of Dung-Seo and Cavalcante-Mirandola-Vitório.
LA - eng
KW - weighted Poincaré inequality; $\delta $-stability; $L^{p}$ harmonic $1$-form; property $(\mathcal {P}_\rho )$
UR - http://eudml.org/doc/294484
ER -

References

top
  1. Calderbank, D. M. J., Gauduchon, P., Herzlich, M., 10.1006/jfan.2000.3563, J. Funct. Anal. 173 (2000), 214-255. (2000) Zbl0960.58010MR1760284DOI10.1006/jfan.2000.3563
  2. Carron, G., 10.1007/s002080050310, Math. Ann. 314 (1999), 613-639 French. (1999) Zbl0933.35054MR1709104DOI10.1007/s002080050310
  3. Cavalcante, M. P., Mirandola, H., Vitório, F., 10.1007/s12220-012-9334-0, J. Geom. Anal. 24 (2014), 205-222. (2014) Zbl1308.53056MR3145922DOI10.1007/s12220-012-9334-0
  4. Chao, X., Lv, Y., 10.4134/JKMS.j150190, J. Korean Math. Soc. 53 (2016), 583-595. (2016) Zbl1339.53059MR3498284DOI10.4134/JKMS.j150190
  5. Dung, N. T., Seo, K., 10.1007/s10455-011-9293-x, Ann. Global Anal. Geom. 41 (2012), 447-460. (2012) Zbl1242.53073MR2891296DOI10.1007/s10455-011-9293-x
  6. Dung, N. T., Seo, K., 10.1016/j.jmaa.2014.10.076, J. Math. Anal. Appl. 423 (2015), 1594-1609. (2015) Zbl1303.53067MR3278217DOI10.1016/j.jmaa.2014.10.076
  7. Fu, H.-P., Li, Z.-Q., 10.2996/kmj/1257948888, Kodai Math. J. 32 (2009), 432-441. (2009) Zbl1182.53048MR2582010DOI10.2996/kmj/1257948888
  8. Greene, R. E., Wu, H., 10.1007/BF01425500, Invent. Math. 27 (1974), 265-298. (1974) Zbl0342.31003MR0382723DOI10.1007/BF01425500
  9. Greene, R. E., Wu, H., 10.1307/mmj/1029002458, Mich. Math. J. 28 (1981), 63-81. (1981) Zbl0477.53058MR0600415DOI10.1307/mmj/1029002458
  10. Hoffman, D., Spruck, J., 10.1002/cpa.3160270601, Commun. Pure Appl. Math. 27 (1974), 715-727. (1974) Zbl0295.53025MR0365424DOI10.1002/cpa.3160270601
  11. Kawai, S., 10.14492/hokmj/1381517802, Hokkaido Math. J. 17 (1988), 147-150. (1988) Zbl0653.53044MR0945852DOI10.14492/hokmj/1381517802
  12. Lam, K.-H., 10.1090/S0002-9947-10-04894-4, Trans. Am. Math. Soc. 362 (2010), 5043-5062. (2010) Zbl1201.53041MR2657671DOI10.1090/S0002-9947-10-04894-4
  13. Li, P., 10.1017/CBO9781139105798, Cambridge Studies in Advanced Mathematics 134, Cambridge University Press, Cambridge (2012). (2012) Zbl1246.53002MR2962229DOI10.1017/CBO9781139105798
  14. Li, P., Schoen, R., 10.1007/BF02392380, Acta Math. 153 (1984), 279-301. (1984) Zbl0556.31005MR0766266DOI10.1007/BF02392380
  15. Li, P., Wang, J., 10.4310/jdg/1090348357, J. Differ. Geom. 58 (2001), 501-534. (2001) Zbl1032.58016MR1906784DOI10.4310/jdg/1090348357
  16. Miyaoka, R., L 2 harmonic 1 -forms on a complete stable minimal hypersurface, Geometry and Global Analysis T. Kotake et al. Int. Research Inst., Sendai 1993, Tôhoku Univ., Mathematical Institute (1993), 289-293. (1993) Zbl0912.53042MR1361194
  17. Palmer, B., 10.1007/BF02566644, Comment. Math. Helv. 66 (1991), 185-188. (1991) Zbl0736.53054MR1107838DOI10.1007/BF02566644
  18. Sang, N. D., Thanh, N. T., 10.4134/CKMS.2014.29.1.123, Commum. Korean. Math. Soc. 29 (2014), 123-130. (2014) Zbl1288.53055MR3162987DOI10.4134/CKMS.2014.29.1.123
  19. Seo, K., 10.1016/j.jmaa.2010.05.048, J. Math. Anal. Appl. 371 (2010), 546-551. (2010) Zbl1195.53087MR2670132DOI10.1016/j.jmaa.2010.05.048
  20. Seo, K., 10.1007/s00013-009-0096-2, Arch. Math. 94 (2010), 173-181. (2010) Zbl1185.53069MR2592764DOI10.1007/s00013-009-0096-2
  21. Seo, K., 10.2140/pjm.2014.268.205, Pac. J. Math. 268 (2014), 205-229. (2014) Zbl1295.53067MR3207607DOI10.2140/pjm.2014.268.205
  22. Shiohama, K., Xu, H., 10.1023/A:1000189116072, Compos. Math. 107 (1997), 221-232. (1997) Zbl0905.53038MR1458750DOI10.1023/A:1000189116072
  23. Tam, L.-F., Zhou, D., 10.1090/S0002-9939-09-09962-6, Proc. Am. Math. Soc. 137 (2009), 3451-3461. (2009) Zbl1184.53016MR2515414DOI10.1090/S0002-9939-09-09962-6
  24. Vieira, M., 10.1007/s10711-016-0165-1, Geom. Dedicata 184 (2016), 175-191. (2016) Zbl1353.53047MR3547788DOI10.1007/s10711-016-0165-1
  25. Yau, S.-T., 10.1512/iumj.1976.25.25051, Indiana Univ. Math. J. 25 (1976), 659-670 erratum ibid. 31 1982 607. (1976) Zbl0335.53041MR0417452DOI10.1512/iumj.1976.25.25051
  26. Yun, G., 10.1023/A:1014211121535, Geom. Dedicata. 89 (2002), 135-141. (2002) Zbl1002.53042MR1890955DOI10.1023/A:1014211121535

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.