On weak supercyclicity II
Carlos S. Kubrusly; Bhagwati P. Duggal
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 2, page 371-386
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKubrusly, Carlos S., and Duggal, Bhagwati P.. "On weak supercyclicity II." Czechoslovak Mathematical Journal 68.2 (2018): 371-386. <http://eudml.org/doc/294485>.
@article{Kubrusly2018,
abstract = {This paper considers weak supercyclicity for bounded linear operators on a normed space. On the one hand, weak supercyclicity is investigated for classes of Hilbert-space operators: (i) self-adjoint operators are not weakly supercyclic, (ii) diagonalizable operators are not weakly $l$-sequentially supercyclic, and (iii) weak $l$-sequential supercyclicity is preserved between a unitary operator and its adjoint. On the other hand, weak supercyclicity is investigated for classes of normed-space operators: (iv) the point spectrum of the normed-space adjoint of a power bounded supercyclic operator is either empty or is a singleton in the open unit disk, (v) weak $l$-sequential supercyclicity coincides with supercyclicity for compact operators, and (vi) every compact weakly $l$-sequentially supercyclic operator is quasinilpotent.},
author = {Kubrusly, Carlos S., Duggal, Bhagwati P.},
journal = {Czechoslovak Mathematical Journal},
keywords = {supercyclic operator; weakly supercyclic operator; weakly $l$-sequentially supercyclic operator},
language = {eng},
number = {2},
pages = {371-386},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On weak supercyclicity II},
url = {http://eudml.org/doc/294485},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Kubrusly, Carlos S.
AU - Duggal, Bhagwati P.
TI - On weak supercyclicity II
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 371
EP - 386
AB - This paper considers weak supercyclicity for bounded linear operators on a normed space. On the one hand, weak supercyclicity is investigated for classes of Hilbert-space operators: (i) self-adjoint operators are not weakly supercyclic, (ii) diagonalizable operators are not weakly $l$-sequentially supercyclic, and (iii) weak $l$-sequential supercyclicity is preserved between a unitary operator and its adjoint. On the other hand, weak supercyclicity is investigated for classes of normed-space operators: (iv) the point spectrum of the normed-space adjoint of a power bounded supercyclic operator is either empty or is a singleton in the open unit disk, (v) weak $l$-sequential supercyclicity coincides with supercyclicity for compact operators, and (vi) every compact weakly $l$-sequentially supercyclic operator is quasinilpotent.
LA - eng
KW - supercyclic operator; weakly supercyclic operator; weakly $l$-sequentially supercyclic operator
UR - http://eudml.org/doc/294485
ER -
References
top- Abramovich, Y. A., Aliprantis, C. D., 10.1090/gsm/050, Graduate Studies in Mathematics 50, American Mathematical Society, Providence (2002). (2002) Zbl1022.47001MR1921782DOI10.1090/gsm/050
- Ansari, S. I., 10.1006/jfan.1996.3093, J. Funct. Anal. 148 (1997), 384-390. (1997) Zbl0898.47019MR1469346DOI10.1006/jfan.1996.3093
- Ansari, S. I., Bourdon, P. S., Some properties of cyclic operators, Acta Sci. Math. 63 (1997), 195-207. (1997) Zbl0892.47004MR1459787
- Bayart, F., Matheron, E., 10.1017/S0013091504000975, Proc. Edinb. Math. Soc., II. Ser. 49 (2006), 1-15. (2006) Zbl1103.47006MR2202138DOI10.1017/S0013091504000975
- Bayart, F., Matheron, É., 10.1017/CBO9780511581113, Cambridge Tracts in Mathematics 179, Cambridge University Press, Cambridge (2009). (2009) Zbl1187.47001MR2533318DOI10.1017/CBO9780511581113
- Bès, J., Chan, K. C., Sanders, R., 10.3318/PRIA.2005.105.2.79, Math. Proc. R. Ir. Acad. 105A (2005), 79-85. (2005) Zbl1113.47005MR2182152DOI10.3318/PRIA.2005.105.2.79
- Bonet, J., Frerick, L., Peris, A., Wengenroth, J., 10.1112/S0024609304003698, Bull. Lond. Math. Soc. 37 (2005), 254-264. (2005) Zbl1150.47005MR2119025DOI10.1112/S0024609304003698
- Bonet, J., Peris, A., 10.1006/jfan.1998.3315, J. Funct. Anal. 159 (1998), 587-595. (1998) Zbl0926.47011MR1658096DOI10.1006/jfan.1998.3315
- Bourdon, P. S., 10.1307/mmj/1029005709, Mich. Math. J. 44 (1997), 345-353. (1997) Zbl0896.47020MR1460419DOI10.1307/mmj/1029005709
- Conway, J. B., A Course in Functional Analysis, Graduate Texts in Mathematics 96, Springer, New York (1990). (1990) Zbl0706.46003MR1070713
- Dilworth, S. J., Troitsky, V. G., 10.1090/conm/321/05634, Trends in Banach Spaces and Operator Theory A Conf. on Trends in Banach Spaces and Operator Theory, Memphis, 2001, Contemp. Math. 321, American Mathematical Society, Providence (2003), 67-69. (2003) Zbl1052.47003MR1978807DOI10.1090/conm/321/05634
- Duggal, B. P., 10.1007/s12215-016-0234-1, Rend. Circ. Mat. Palermo (2) 65 (2016), 297-306. (2016) Zbl1356.47027MR3535456DOI10.1007/s12215-016-0234-1
- Duggal, B. P., Kubrusly, C. S., Kim, I. H., 10.1016/j.jmaa.2015.02.040, J. Math. Anal. Appl. 427 (2015), 107-113. (2015) Zbl1330.47029MR3318189DOI10.1016/j.jmaa.2015.02.040
- Gallardo-Gutiérrez, E. A., Montes-Rodríguez, A., 10.1007/s00020-003-1227-y, Integral Equations Oper. Theory 50 (2004), 211-216. (2004) Zbl1080.47011MR2099790DOI10.1007/s00020-003-1227-y
- Grosse-Erdmann, K.-G., Manguillot, A. Peris, 10.1007/978-1-4471-2170-1, Universitext, Springer, London (2011). (2011) Zbl1246.47004MR2919812DOI10.1007/978-1-4471-2170-1
- Halmos, P. R., 10.1007/978-1-4684-9330-6, Graduate Texts in Mathematics 19, Springer, New York (1982). (1982) Zbl0496.47001MR0675952DOI10.1007/978-1-4684-9330-6
- Herrero, D. A., 10.1016/0022-1236(91)90058-D, J. Funct. Anal. 99 (1991), 179-190. (1991) Zbl0758.47016MR1120920DOI10.1016/0022-1236(91)90058-D
- Herzog, G., 10.4064/sm-103-3-295-298, Stud. Math. 103 (1992), 295-298. (1992) Zbl0811.47018MR1202014DOI10.4064/sm-103-3-295-298
- Hilden, H. M., Wallen, L. J., 10.1512/iumj.1974.23.23046, Indiana Univ. Math. J. 23 (1974), 557-565. (1974) Zbl0274.47004MR0326452DOI10.1512/iumj.1974.23.23046
- Kubrusly, C. S., 10.1007/978-0-8176-4998-2, Birkhäuser, New York (2011). (2011) Zbl1231.47001MR2778685DOI10.1007/978-0-8176-4998-2
- Kubrusly, C. S., 10.1007/978-0-8176-8328-3, Birkhäuser, New York (2012). (2012) Zbl1256.47001MR2951608DOI10.1007/978-0-8176-8328-3
- Kubrusly, C. S., 10.3318/PRIA.2016.116.04, Math. Proc. R. Ir. Acad. 116A (2016), 45-56. (2016) Zbl06629394MR3653822DOI10.3318/PRIA.2016.116.04
- Kubrusly, C. S., Duggal, B. P., On weak supercyclicity I, Avaible athttps://arxiv.org/abs/1801.08091.
- Megginson, R. E., 10.1007/978-1-4612-0603-3, Graduate Texts in Mathematics 183, Springer, New York (1998). (1998) Zbl0910.46008MR1650235DOI10.1007/978-1-4612-0603-3
- Montes-Rodríguez, A., Shkarin, S. A., Non-weakly supercyclic operators, J. Oper. Theory 58 (2007), 39-62. (2007) Zbl1138.47300MR2336044
- Peris, A., 10.1007/PL00004850, Math. Z. 236 (2001), 779-786. (2001) Zbl0994.47011MR1827503DOI10.1007/PL00004850
- Salas, H. N., 10.4064/sm-135-1-55-74, Stud. Math. 135 (1999), 55-74. (1999) Zbl0940.47005MR1686371DOI10.4064/sm-135-1-55-74
- Sanders, R., 10.1016/j.jmaa.2003.11.049, J. Math. Anal. Appl. 292 (2004), 148-159. (2004) Zbl1073.47013MR2050222DOI10.1016/j.jmaa.2003.11.049
- Schechter, M., 10.1090/gsm/036, Graduate Studies in Mathematics 36, American Mathematical Society, Providence (2002). (2002) Zbl1002.46002MR1861991DOI10.1090/gsm/036
- Shkarin, S., 10.1016/j.jfa.2006.04.021, J. Funct. Anal. 242 (2007), 37-77. (2007) Zbl1114.47007MR2274015DOI10.1016/j.jfa.2006.04.021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.