On weak supercyclicity II

Carlos S. Kubrusly; Bhagwati P. Duggal

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 2, page 371-386
  • ISSN: 0011-4642

Abstract

top
This paper considers weak supercyclicity for bounded linear operators on a normed space. On the one hand, weak supercyclicity is investigated for classes of Hilbert-space operators: (i) self-adjoint operators are not weakly supercyclic, (ii) diagonalizable operators are not weakly l -sequentially supercyclic, and (iii) weak l -sequential supercyclicity is preserved between a unitary operator and its adjoint. On the other hand, weak supercyclicity is investigated for classes of normed-space operators: (iv) the point spectrum of the normed-space adjoint of a power bounded supercyclic operator is either empty or is a singleton in the open unit disk, (v) weak l -sequential supercyclicity coincides with supercyclicity for compact operators, and (vi) every compact weakly l -sequentially supercyclic operator is quasinilpotent.

How to cite

top

Kubrusly, Carlos S., and Duggal, Bhagwati P.. "On weak supercyclicity II." Czechoslovak Mathematical Journal 68.2 (2018): 371-386. <http://eudml.org/doc/294485>.

@article{Kubrusly2018,
abstract = {This paper considers weak supercyclicity for bounded linear operators on a normed space. On the one hand, weak supercyclicity is investigated for classes of Hilbert-space operators: (i) self-adjoint operators are not weakly supercyclic, (ii) diagonalizable operators are not weakly $l$-sequentially supercyclic, and (iii) weak $l$-sequential supercyclicity is preserved between a unitary operator and its adjoint. On the other hand, weak supercyclicity is investigated for classes of normed-space operators: (iv) the point spectrum of the normed-space adjoint of a power bounded supercyclic operator is either empty or is a singleton in the open unit disk, (v) weak $l$-sequential supercyclicity coincides with supercyclicity for compact operators, and (vi) every compact weakly $l$-sequentially supercyclic operator is quasinilpotent.},
author = {Kubrusly, Carlos S., Duggal, Bhagwati P.},
journal = {Czechoslovak Mathematical Journal},
keywords = {supercyclic operator; weakly supercyclic operator; weakly $l$-sequentially supercyclic operator},
language = {eng},
number = {2},
pages = {371-386},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On weak supercyclicity II},
url = {http://eudml.org/doc/294485},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Kubrusly, Carlos S.
AU - Duggal, Bhagwati P.
TI - On weak supercyclicity II
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 371
EP - 386
AB - This paper considers weak supercyclicity for bounded linear operators on a normed space. On the one hand, weak supercyclicity is investigated for classes of Hilbert-space operators: (i) self-adjoint operators are not weakly supercyclic, (ii) diagonalizable operators are not weakly $l$-sequentially supercyclic, and (iii) weak $l$-sequential supercyclicity is preserved between a unitary operator and its adjoint. On the other hand, weak supercyclicity is investigated for classes of normed-space operators: (iv) the point spectrum of the normed-space adjoint of a power bounded supercyclic operator is either empty or is a singleton in the open unit disk, (v) weak $l$-sequential supercyclicity coincides with supercyclicity for compact operators, and (vi) every compact weakly $l$-sequentially supercyclic operator is quasinilpotent.
LA - eng
KW - supercyclic operator; weakly supercyclic operator; weakly $l$-sequentially supercyclic operator
UR - http://eudml.org/doc/294485
ER -

References

top
  1. Abramovich, Y. A., Aliprantis, C. D., 10.1090/gsm/050, Graduate Studies in Mathematics 50, American Mathematical Society, Providence (2002). (2002) Zbl1022.47001MR1921782DOI10.1090/gsm/050
  2. Ansari, S. I., 10.1006/jfan.1996.3093, J. Funct. Anal. 148 (1997), 384-390. (1997) Zbl0898.47019MR1469346DOI10.1006/jfan.1996.3093
  3. Ansari, S. I., Bourdon, P. S., Some properties of cyclic operators, Acta Sci. Math. 63 (1997), 195-207. (1997) Zbl0892.47004MR1459787
  4. Bayart, F., Matheron, E., 10.1017/S0013091504000975, Proc. Edinb. Math. Soc., II. Ser. 49 (2006), 1-15. (2006) Zbl1103.47006MR2202138DOI10.1017/S0013091504000975
  5. Bayart, F., Matheron, É., 10.1017/CBO9780511581113, Cambridge Tracts in Mathematics 179, Cambridge University Press, Cambridge (2009). (2009) Zbl1187.47001MR2533318DOI10.1017/CBO9780511581113
  6. Bès, J., Chan, K. C., Sanders, R., 10.3318/PRIA.2005.105.2.79, Math. Proc. R. Ir. Acad. 105A (2005), 79-85. (2005) Zbl1113.47005MR2182152DOI10.3318/PRIA.2005.105.2.79
  7. Bonet, J., Frerick, L., Peris, A., Wengenroth, J., 10.1112/S0024609304003698, Bull. Lond. Math. Soc. 37 (2005), 254-264. (2005) Zbl1150.47005MR2119025DOI10.1112/S0024609304003698
  8. Bonet, J., Peris, A., 10.1006/jfan.1998.3315, J. Funct. Anal. 159 (1998), 587-595. (1998) Zbl0926.47011MR1658096DOI10.1006/jfan.1998.3315
  9. Bourdon, P. S., 10.1307/mmj/1029005709, Mich. Math. J. 44 (1997), 345-353. (1997) Zbl0896.47020MR1460419DOI10.1307/mmj/1029005709
  10. Conway, J. B., A Course in Functional Analysis, Graduate Texts in Mathematics 96, Springer, New York (1990). (1990) Zbl0706.46003MR1070713
  11. Dilworth, S. J., Troitsky, V. G., 10.1090/conm/321/05634, Trends in Banach Spaces and Operator Theory A Conf. on Trends in Banach Spaces and Operator Theory, Memphis, 2001, Contemp. Math. 321, American Mathematical Society, Providence (2003), 67-69. (2003) Zbl1052.47003MR1978807DOI10.1090/conm/321/05634
  12. Duggal, B. P., 10.1007/s12215-016-0234-1, Rend. Circ. Mat. Palermo (2) 65 (2016), 297-306. (2016) Zbl1356.47027MR3535456DOI10.1007/s12215-016-0234-1
  13. Duggal, B. P., Kubrusly, C. S., Kim, I. H., 10.1016/j.jmaa.2015.02.040, J. Math. Anal. Appl. 427 (2015), 107-113. (2015) Zbl1330.47029MR3318189DOI10.1016/j.jmaa.2015.02.040
  14. Gallardo-Gutiérrez, E. A., Montes-Rodríguez, A., 10.1007/s00020-003-1227-y, Integral Equations Oper. Theory 50 (2004), 211-216. (2004) Zbl1080.47011MR2099790DOI10.1007/s00020-003-1227-y
  15. Grosse-Erdmann, K.-G., Manguillot, A. Peris, 10.1007/978-1-4471-2170-1, Universitext, Springer, London (2011). (2011) Zbl1246.47004MR2919812DOI10.1007/978-1-4471-2170-1
  16. Halmos, P. R., 10.1007/978-1-4684-9330-6, Graduate Texts in Mathematics 19, Springer, New York (1982). (1982) Zbl0496.47001MR0675952DOI10.1007/978-1-4684-9330-6
  17. Herrero, D. A., 10.1016/0022-1236(91)90058-D, J. Funct. Anal. 99 (1991), 179-190. (1991) Zbl0758.47016MR1120920DOI10.1016/0022-1236(91)90058-D
  18. Herzog, G., 10.4064/sm-103-3-295-298, Stud. Math. 103 (1992), 295-298. (1992) Zbl0811.47018MR1202014DOI10.4064/sm-103-3-295-298
  19. Hilden, H. M., Wallen, L. J., 10.1512/iumj.1974.23.23046, Indiana Univ. Math. J. 23 (1974), 557-565. (1974) Zbl0274.47004MR0326452DOI10.1512/iumj.1974.23.23046
  20. Kubrusly, C. S., 10.1007/978-0-8176-4998-2, Birkhäuser, New York (2011). (2011) Zbl1231.47001MR2778685DOI10.1007/978-0-8176-4998-2
  21. Kubrusly, C. S., 10.1007/978-0-8176-8328-3, Birkhäuser, New York (2012). (2012) Zbl1256.47001MR2951608DOI10.1007/978-0-8176-8328-3
  22. Kubrusly, C. S., 10.3318/PRIA.2016.116.04, Math. Proc. R. Ir. Acad. 116A (2016), 45-56. (2016) Zbl06629394MR3653822DOI10.3318/PRIA.2016.116.04
  23. Kubrusly, C. S., Duggal, B. P., On weak supercyclicity I, Avaible athttps://arxiv.org/abs/1801.08091. 
  24. Megginson, R. E., 10.1007/978-1-4612-0603-3, Graduate Texts in Mathematics 183, Springer, New York (1998). (1998) Zbl0910.46008MR1650235DOI10.1007/978-1-4612-0603-3
  25. Montes-Rodríguez, A., Shkarin, S. A., Non-weakly supercyclic operators, J. Oper. Theory 58 (2007), 39-62. (2007) Zbl1138.47300MR2336044
  26. Peris, A., 10.1007/PL00004850, Math. Z. 236 (2001), 779-786. (2001) Zbl0994.47011MR1827503DOI10.1007/PL00004850
  27. Salas, H. N., 10.4064/sm-135-1-55-74, Stud. Math. 135 (1999), 55-74. (1999) Zbl0940.47005MR1686371DOI10.4064/sm-135-1-55-74
  28. Sanders, R., 10.1016/j.jmaa.2003.11.049, J. Math. Anal. Appl. 292 (2004), 148-159. (2004) Zbl1073.47013MR2050222DOI10.1016/j.jmaa.2003.11.049
  29. Schechter, M., 10.1090/gsm/036, Graduate Studies in Mathematics 36, American Mathematical Society, Providence (2002). (2002) Zbl1002.46002MR1861991DOI10.1090/gsm/036
  30. Shkarin, S., 10.1016/j.jfa.2006.04.021, J. Funct. Anal. 242 (2007), 37-77. (2007) Zbl1114.47007MR2274015DOI10.1016/j.jfa.2006.04.021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.