Time-dependent numerical modeling of large-scale astrophysical processes: from relatively smooth flows to explosive events with extremely large discontinuities and high Mach numbers

Petr Kurfürst; Jiří Krtička

Applications of Mathematics (2017)

  • Volume: 62, Issue: 6, page 633-659
  • ISSN: 0862-7940

Abstract

top
We calculate self-consistent time-dependent models of astrophysical processes. We have developed two types of our own (magneto) hydrodynamic codes, either the operator-split, finite volume Eulerian code on a staggered grid for smooth hydrodynamic flows, or the finite volume unsplit code based on the Roe's method for explosive events with extremely large discontinuities and highly supersonic outbursts. Both the types of the codes use the second order Navier-Stokes viscosity to realistically model the viscous and dissipative effects. They are transformed to all basic orthogonal curvilinear coordinate systems as well as to a special non-orthogonal geometric system that fits to modeling of astrophysical disks. We describe mathematical background of our codes and their implementation for astrophysical simulations, including choice of initial and boundary conditions. We demonstrate some calculated models and compare the practical usage of numerically different types of codes.

How to cite

top

Kurfürst, Petr, and Krtička, Jiří. "Time-dependent numerical modeling of large-scale astrophysical processes: from relatively smooth flows to explosive events with extremely large discontinuities and high Mach numbers." Applications of Mathematics 62.6 (2017): 633-659. <http://eudml.org/doc/294500>.

@article{Kurfürst2017,
abstract = {We calculate self-consistent time-dependent models of astrophysical processes. We have developed two types of our own (magneto) hydrodynamic codes, either the operator-split, finite volume Eulerian code on a staggered grid for smooth hydrodynamic flows, or the finite volume unsplit code based on the Roe's method for explosive events with extremely large discontinuities and highly supersonic outbursts. Both the types of the codes use the second order Navier-Stokes viscosity to realistically model the viscous and dissipative effects. They are transformed to all basic orthogonal curvilinear coordinate systems as well as to a special non-orthogonal geometric system that fits to modeling of astrophysical disks. We describe mathematical background of our codes and their implementation for astrophysical simulations, including choice of initial and boundary conditions. We demonstrate some calculated models and compare the practical usage of numerically different types of codes.},
author = {Kurfürst, Petr, Krtička, Jiří},
journal = {Applications of Mathematics},
keywords = {Eulerian hydrodynamics; finite volume; operator-split method; unsplit method; Roe's method; curvilinear coordinates},
language = {eng},
number = {6},
pages = {633-659},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Time-dependent numerical modeling of large-scale astrophysical processes: from relatively smooth flows to explosive events with extremely large discontinuities and high Mach numbers},
url = {http://eudml.org/doc/294500},
volume = {62},
year = {2017},
}

TY - JOUR
AU - Kurfürst, Petr
AU - Krtička, Jiří
TI - Time-dependent numerical modeling of large-scale astrophysical processes: from relatively smooth flows to explosive events with extremely large discontinuities and high Mach numbers
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 6
SP - 633
EP - 659
AB - We calculate self-consistent time-dependent models of astrophysical processes. We have developed two types of our own (magneto) hydrodynamic codes, either the operator-split, finite volume Eulerian code on a staggered grid for smooth hydrodynamic flows, or the finite volume unsplit code based on the Roe's method for explosive events with extremely large discontinuities and highly supersonic outbursts. Both the types of the codes use the second order Navier-Stokes viscosity to realistically model the viscous and dissipative effects. They are transformed to all basic orthogonal curvilinear coordinate systems as well as to a special non-orthogonal geometric system that fits to modeling of astrophysical disks. We describe mathematical background of our codes and their implementation for astrophysical simulations, including choice of initial and boundary conditions. We demonstrate some calculated models and compare the practical usage of numerically different types of codes.
LA - eng
KW - Eulerian hydrodynamics; finite volume; operator-split method; unsplit method; Roe's method; curvilinear coordinates
UR - http://eudml.org/doc/294500
ER -

References

top
  1. Arnett, D., Supernovae and Nucleosynthesis: An Investigation of the History of Matter, from the Big Bang to the Present, Princeton Series in Astrophysics, Princeton University Press (1996). (1996) 
  2. Caramana, E. J., Shashkov, M. J., Whalen, P. P., 10.1006/jcph.1998.5989, J. Comput. Phys. 144 (1998), 70-97. (1998) MR1633037DOI10.1006/jcph.1998.5989
  3. Cargo, P., Gallice, G., 10.1006/jcph.1997.5773, J. Comput. Phys. 136 (1997), 446-466. (1997) Zbl0919.76053MR1474413DOI10.1006/jcph.1997.5773
  4. Chevalier, R. A., 10.1086/160126, Astrophys. J. 258 (1982), 790-797. (1982) DOI10.1086/160126
  5. Chevalier, R. A., Soker, N., 10.1086/167545, Astrophys. J. 341 (1989), 867-882. (1989) DOI10.1086/167545
  6. Chung, T. J., 10.1017/CBO9780511606205, Cambridge University Press, Cambridge (2002). (2002) Zbl1037.76001MR1890713DOI10.1017/CBO9780511606205
  7. Hirsch, C., Numerical Computation of Internal and External Flows. Volume 1: Fundamentals of Numerical Discretization, Wiley Series in Numerical Methods in Engineering, Wiley-Interscience Publication, Chichester (1988). (1988) Zbl0662.76001
  8. Hirsch, C., Numerical Computation of Internal and External Flows. Volume 2: Computational Methods for Inviscid and Viscous Flows, Wiley Series in Numerical Methods in Engineering, John Willey & Sons, Chichester (1990). (1990) Zbl0742.76001
  9. Krtička, J., Kurfürst, P., Krtičková, I., 10.1051/0004-6361/201424867, Astron. Astrophys. 573 (2015), A20, 7 pages. (2015) DOI10.1051/0004-6361/201424867
  10. Krtička, J., Owocki, S. P., Meynet, G., 10.1051/0004-6361/201015951, Astron. Astrophys. 527 (2011), A84, 9 pages. (2011) DOI10.1051/0004-6361/201015951
  11. Kurfürst, P., Models of Hot Star Decretion Disks, PhD Thesis, Masaryk University, Brno (2015). (2015) 
  12. Kurfürst, P., Feldmeier, A., Krtička, J., 10.1051/0004-6361/201424272, Astron. Astrophys. 569 (2014), A23. (2014) DOI10.1051/0004-6361/201424272
  13. Kurfürst, P., Feldmeier, A., Krtička, J., Modeling sgB[e] circumstellar disks, The B[e] Phenomenon: Forty Years of Studies Proc. Conf., Praha 2016, Astron. Soc. Pacific Conf. Ser. 508, Astronomical Society of the Pacific, San Francisco (2017), 17. (2017) 
  14. Lee, U., Saio, Y., Osaki, H., 10.1093/mnras/250.2.432, Mon. Not. R. Astron. Soc. 250 (1991), 432-437. (1991) DOI10.1093/mnras/250.2.432
  15. LeVeque, R. J., 10.1007/3-540-31632-9_1, Computational Methods for Astrophysical Fluid Flow Saas-Fee Advanced Course 27, Lecture notes 1997, Swiss Society for Astrophysics and Astronomy, Springer, Berlin O. Steiner et al. (1998). (1998) Zbl0931.76052DOI10.1007/3-540-31632-9_1
  16. LeVeque, R. J., 10.1017/CBO9780511791253, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2002). (2002) Zbl1010.65040MR1925043DOI10.1017/CBO9780511791253
  17. Maeder, A., 10.1007/978-3-540-76949-1, Springer, Berlin, Heidelberg (2009). (2009) DOI10.1007/978-3-540-76949-1
  18. Mihalas, D., Stellar Atmospheres, W. H. Freeman and Co., San Francisco (1978). (1978) 
  19. Mihalas, D., Mihalas, B. W., Foundations of Radiation Hydrodynamics, Oxford University Press, New York (1984). (1984) Zbl0651.76005MR0781346
  20. Nadyozhin, D. K., 10.1007/BF00653506, Astrophys. Space Sci. 112 (1985), 225-249. (1985) Zbl0593.76075DOI10.1007/BF00653506
  21. Norman, M. L., Winkler, K.-H. A., 10.1007/978-94-009-4754-2_6, Astrophysical Radiation Hydrodynamics NATO Advanced Science Institutes (ASIC, volume 188), Springer, Dordrecht (1986), 187-221. (1986) DOI10.1007/978-94-009-4754-2_6
  22. Roache, P. J., Computational Fluid Dynamics, Hermosa Publishers, Albuquerque (1976). (1976) Zbl0251.76002MR0411358
  23. Roe, P. L., 10.1006/jcph.1997.5705, J. Comput. Phys. 135 (1997), 250-258. (1997) Zbl0890.65094MR1486275DOI10.1006/jcph.1997.5705
  24. Sedov, L. I., Similarity and Dimensional Methods in Mechanics, Nauka, Moskva Russian (1987). (1987) Zbl0672.76001MR0912491
  25. Shakura, N. I., Sunyaev, R. A., Black holes in binary systems: Observational appearance, Astron. Astrophys. 24 (1973), 337-355. (1973) 
  26. Skinner, M. A., Ostriker, E. C., 10.1088/0067-0049/188/1/290, Astrophys. J. Supp. Ser. 188 (2010), 290-311. (2010) DOI10.1088/0067-0049/188/1/290
  27. Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F., Simon, J. B., 10.1086/588755, Astrophys. J. Supp. Ser. 178 (2008), 137-177. (2008) MR1547901DOI10.1086/588755
  28. Stone, J. M., Norman, M. L., 10.1086/191680, Astrophys. J. Supp. Ser. 80 (1992), 753-790. (1992) DOI10.1086/191680
  29. Toro, E. F., 10.1007/b79761, Springer, Berlin (2009). (2009) Zbl1227.76006MR2731357DOI10.1007/b79761
  30. Truelove, J. K., McKee, C. F., 10.1086/313176, Astrophys. J. Supp. Ser. 120 (1999), 299-326. (1999) DOI10.1086/313176
  31. Leer, B. van, 10.1016/0021-9991(77)90095-X, J. Comput. Phys. 23 (1977), 276-299. (1977) Zbl0339.76056DOI10.1016/0021-9991(77)90095-X
  32. Leer, B. van, 10.1007/3-540-11948-5_66, Int. Conf. Numerical Methods in Fluid Dynamics Lecture Notes in Physics 170, Springer, Berlin (1982), 507-512. (1982) DOI10.1007/3-540-11948-5_66
  33. Zel'dovich, Ya. B., Raizer, Yu. P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, New York (1967). (1967) Zbl0124.42303

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.