An instrumental variable method for robot identification based on time variable parameter estimation
Mathieu Brunot; Alexandre Janot; Peter Young; Francisco Carrillo
Kybernetika (2018)
- Volume: 54, Issue: 1, page 202-220
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBrunot, Mathieu, et al. "An instrumental variable method for robot identification based on time variable parameter estimation." Kybernetika 54.1 (2018): 202-220. <http://eudml.org/doc/294502>.
@article{Brunot2018,
abstract = {This paper considers the data-based identification of industrial robots using an instrumental variable method that uses off-line estimation of the joint velocities and acceleration signals based only on the measurement of the joint positions. The usual approach to this problem relies on a ‘tailor-made’ prefiltering procedure for estimating the derivatives that depends on good prior knowledge of the system's bandwidth. The paper describes an alternative Integrated Random Walk SMoothing (IRWSM) method that is more robust to deficiencies in such a priori knowledge and exploits an optimal recursive algorithm based on a simple integrated random walk model and a Kalman filter with associated fixed interval smoothing. The resultant IDIM-IV instrumental variable method, using this approach to signal generation, is evaluated by its application to an industrial robot arm and comparison with previously proposed methods.},
author = {Brunot, Mathieu, Janot, Alexandre, Young, Peter, Carrillo, Francisco},
journal = {Kybernetika},
keywords = {industrial robot system; system identification; instrumental variable method; parameter estimation; Kalman filter; fixed interval smoothing},
language = {eng},
number = {1},
pages = {202-220},
publisher = {Institute of Information Theory and Automation AS CR},
title = {An instrumental variable method for robot identification based on time variable parameter estimation},
url = {http://eudml.org/doc/294502},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Brunot, Mathieu
AU - Janot, Alexandre
AU - Young, Peter
AU - Carrillo, Francisco
TI - An instrumental variable method for robot identification based on time variable parameter estimation
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 1
SP - 202
EP - 220
AB - This paper considers the data-based identification of industrial robots using an instrumental variable method that uses off-line estimation of the joint velocities and acceleration signals based only on the measurement of the joint positions. The usual approach to this problem relies on a ‘tailor-made’ prefiltering procedure for estimating the derivatives that depends on good prior knowledge of the system's bandwidth. The paper describes an alternative Integrated Random Walk SMoothing (IRWSM) method that is more robust to deficiencies in such a priori knowledge and exploits an optimal recursive algorithm based on a simple integrated random walk model and a Kalman filter with associated fixed interval smoothing. The resultant IDIM-IV instrumental variable method, using this approach to signal generation, is evaluated by its application to an industrial robot arm and comparison with previously proposed methods.
LA - eng
KW - industrial robot system; system identification; instrumental variable method; parameter estimation; Kalman filter; fixed interval smoothing
UR - http://eudml.org/doc/294502
ER -
References
top- Bélanger, P .R., Dobrovolny, P., Helmy, A., Zhang, X., 10.1177/027836499801701107, Int. J. Robotics Research 17 (1998), 1225-1233. DOI10.1177/027836499801701107
- Brunot, M., Janot, A., Carrillo, F., State Space Estimation Method for the Identification of an Industrial Robot Arm., In: Proc. IFAC World Congress 50 (2017) 1, pp. 9815-9820.
- Brunot, M., Janot, A., Carrillo, F., Garnier, H., Vandanjon, P.-O., Gautier, M., 10.1016/j.ifacol.2015.12.231, In: Proc. 17th IFAC Symposium on System Identification, 2015, pp. 823-828. DOI10.1016/j.ifacol.2015.12.231
- Coca, D., Billings, S. A., 10.1006/mssp.1999.1230, Mech. Systems Signal Process. 13(5), (1999), 739-755. DOI10.1006/mssp.1999.1230
- Dridi, M., Scorletti, G., Smaoui, M., Tournier, D., 10.1109/isie.2010.5637595, In: IEEE International Symposium on Industrial Electronics 2010, pp. 184-189. DOI10.1109/isie.2010.5637595
- Durbin, J., Koopman, S. J., 10.1093/acprof:oso/9780199641178.001.0001, Oxford University Press, 2012. MR3014996DOI10.1093/acprof:oso/9780199641178.001.0001
- Garnier, H., Gilson, M., Young, P. C., Huselstein, E., 10.1016/j.conengprac.2006.09.004, Control Engrg. Practice 15 (2007), 471-486. DOI10.1016/j.conengprac.2006.09.004
- Garnier, H., Mensler, M., Richard, A., 10.1080/0020717031000149636, Int. J. Control, 76 (2003), 1337-1357. MR1992923DOI10.1080/0020717031000149636
- Gautier, M., 10.1109/robot.1997.619069, In: Proc. IEEE International Conference on Robotics and Automation 3 (1997), 1922-1927. DOI10.1109/robot.1997.619069
- Gautier, M., Janot, A., Vandanjon, P.-O., 10.1109/tcst.2012.2185697, IEEE Trans. Control Systems Technol. 21 (2013), 428-444. DOI10.1109/tcst.2012.2185697
- Gautier, M., Khalil, W., 10.1177/027836499201100408, Int. J. Robotics Research 11 (1992), 362-375. DOI10.1177/027836499201100408
- Gilson, M., Garnier, H., Young, P. C., Hof, P. M. J. Van den, 10.1049/iet-cta.2009.0476, IET Control Theory Appl. 5 (2011), 1147-1154. MR2850670DOI10.1049/iet-cta.2009.0476
- Janot, A., Vandanjon, P.-O., Gautier, M., 10.1016/j.conengprac.2013.12.009, Control Engrg. Practice 25 (2014), 85-101. DOI10.1016/j.conengprac.2013.12.009
- Janot, A., Vandanjon, P.-O., Gautier, M., 10.1109/tcst.2013.2246163, IEEE Trans. Control Systems Technol. 22 (2014), 132-145. DOI10.1109/tcst.2013.2246163
- Khalil, W., Dombre, E., Modeling, Identification and Control of Robots., Butterworth-Heinemann, 2004. MR2459283
- Mahata, K., Garnier, H., 10.1016/j.automatica.2006.04.012, Automatica 42 (2006), 1477-1490. MR2246837DOI10.1016/j.automatica.2006.04.012
- Marcassus, N., Vandanjon, P.-O., Janot, A., Gautier, M., 10.1109/iros.2007.4399476, In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems 2007, pp. 2455-2460. DOI10.1109/iros.2007.4399476
- Norton, J. P., 10.1049/piee.1975.0183, In: Proc. of the Institution of Electrical Engineers 122 (1975), pp. 663-668. DOI10.1049/piee.1975.0183
- Rao, G. P., Unbehauen, H., 10.1049/ip-cta:20045250, IEE Proc. Control Theory Appl. 153 (2006), 185-220. DOI10.1049/ip-cta:20045250
- Söderström, T., Stoica, P., 10.1049/ip-cta:20045250, Springer, 1983. MR0719197DOI10.1049/ip-cta:20045250
- Favergues, Stäubli, Arm - TX Series 40 Family., Stäubli, 2015.
- Wooldridge, J. M., Introductory Econometrics: A Modern Approach. Fourth edition., South-Western, 2008.
- Young, P. C., 10.1016/0005-1098(70)90098-1, Automatica, 6 (1970), 271-287. DOI10.1016/0005-1098(70)90098-1
- Young, P. C., Recursive Estimation and Time-Series Analysis: An Introduction for The Student and Practitioner. Second edition., Springer Science and Business Media, 2012. MR3024956
- Young, P. C., 10.1016/j.automatica.2014.10.126, Automatica 52, (2015), 35-46. MR3310811DOI10.1016/j.automatica.2014.10.126
- Young, P. C., Foster, M., Lees, M., 10.1016/s1474-6670(17)49207-x, In: Proc. 12th IFAC World Congress 10 (1993), pp. 27-30. DOI10.1016/s1474-6670(17)49207-x
- Young, P. C., Jakeman, A. J., 10.1080/00207178008961080, Int. J. Control 29, 1-30; 30, 621-644, 31, (1979-1980), 741-764. DOI10.1080/00207178008961080
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.