An instrumental variable method for robot identification based on time variable parameter estimation

Mathieu Brunot; Alexandre Janot; Peter Young; Francisco Carrillo

Kybernetika (2018)

  • Volume: 54, Issue: 1, page 202-220
  • ISSN: 0023-5954

Abstract

top
This paper considers the data-based identification of industrial robots using an instrumental variable method that uses off-line estimation of the joint velocities and acceleration signals based only on the measurement of the joint positions. The usual approach to this problem relies on a ‘tailor-made’ prefiltering procedure for estimating the derivatives that depends on good prior knowledge of the system's bandwidth. The paper describes an alternative Integrated Random Walk SMoothing (IRWSM) method that is more robust to deficiencies in such a priori knowledge and exploits an optimal recursive algorithm based on a simple integrated random walk model and a Kalman filter with associated fixed interval smoothing. The resultant IDIM-IV instrumental variable method, using this approach to signal generation, is evaluated by its application to an industrial robot arm and comparison with previously proposed methods.

How to cite

top

Brunot, Mathieu, et al. "An instrumental variable method for robot identification based on time variable parameter estimation." Kybernetika 54.1 (2018): 202-220. <http://eudml.org/doc/294502>.

@article{Brunot2018,
abstract = {This paper considers the data-based identification of industrial robots using an instrumental variable method that uses off-line estimation of the joint velocities and acceleration signals based only on the measurement of the joint positions. The usual approach to this problem relies on a ‘tailor-made’ prefiltering procedure for estimating the derivatives that depends on good prior knowledge of the system's bandwidth. The paper describes an alternative Integrated Random Walk SMoothing (IRWSM) method that is more robust to deficiencies in such a priori knowledge and exploits an optimal recursive algorithm based on a simple integrated random walk model and a Kalman filter with associated fixed interval smoothing. The resultant IDIM-IV instrumental variable method, using this approach to signal generation, is evaluated by its application to an industrial robot arm and comparison with previously proposed methods.},
author = {Brunot, Mathieu, Janot, Alexandre, Young, Peter, Carrillo, Francisco},
journal = {Kybernetika},
keywords = {industrial robot system; system identification; instrumental variable method; parameter estimation; Kalman filter; fixed interval smoothing},
language = {eng},
number = {1},
pages = {202-220},
publisher = {Institute of Information Theory and Automation AS CR},
title = {An instrumental variable method for robot identification based on time variable parameter estimation},
url = {http://eudml.org/doc/294502},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Brunot, Mathieu
AU - Janot, Alexandre
AU - Young, Peter
AU - Carrillo, Francisco
TI - An instrumental variable method for robot identification based on time variable parameter estimation
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 1
SP - 202
EP - 220
AB - This paper considers the data-based identification of industrial robots using an instrumental variable method that uses off-line estimation of the joint velocities and acceleration signals based only on the measurement of the joint positions. The usual approach to this problem relies on a ‘tailor-made’ prefiltering procedure for estimating the derivatives that depends on good prior knowledge of the system's bandwidth. The paper describes an alternative Integrated Random Walk SMoothing (IRWSM) method that is more robust to deficiencies in such a priori knowledge and exploits an optimal recursive algorithm based on a simple integrated random walk model and a Kalman filter with associated fixed interval smoothing. The resultant IDIM-IV instrumental variable method, using this approach to signal generation, is evaluated by its application to an industrial robot arm and comparison with previously proposed methods.
LA - eng
KW - industrial robot system; system identification; instrumental variable method; parameter estimation; Kalman filter; fixed interval smoothing
UR - http://eudml.org/doc/294502
ER -

References

top
  1. Bélanger, P .R., Dobrovolny, P., Helmy, A., Zhang, X., 10.1177/027836499801701107, Int. J. Robotics Research 17 (1998), 1225-1233. DOI10.1177/027836499801701107
  2. Brunot, M., Janot, A., Carrillo, F., State Space Estimation Method for the Identification of an Industrial Robot Arm., In: Proc. IFAC World Congress 50 (2017) 1, pp. 9815-9820. 
  3. Brunot, M., Janot, A., Carrillo, F., Garnier, H., Vandanjon, P.-O., Gautier, M., 10.1016/j.ifacol.2015.12.231, In: Proc. 17th IFAC Symposium on System Identification, 2015, pp. 823-828. DOI10.1016/j.ifacol.2015.12.231
  4. Coca, D., Billings, S. A., 10.1006/mssp.1999.1230, Mech. Systems Signal Process. 13(5), (1999), 739-755. DOI10.1006/mssp.1999.1230
  5. Dridi, M., Scorletti, G., Smaoui, M., Tournier, D., 10.1109/isie.2010.5637595, In: IEEE International Symposium on Industrial Electronics 2010, pp. 184-189. DOI10.1109/isie.2010.5637595
  6. Durbin, J., Koopman, S. J., 10.1093/acprof:oso/9780199641178.001.0001, Oxford University Press, 2012. MR3014996DOI10.1093/acprof:oso/9780199641178.001.0001
  7. Garnier, H., Gilson, M., Young, P. C., Huselstein, E., 10.1016/j.conengprac.2006.09.004, Control Engrg. Practice 15 (2007), 471-486. DOI10.1016/j.conengprac.2006.09.004
  8. Garnier, H., Mensler, M., Richard, A., 10.1080/0020717031000149636, Int. J. Control, 76 (2003), 1337-1357. MR1992923DOI10.1080/0020717031000149636
  9. Gautier, M., 10.1109/robot.1997.619069, In: Proc. IEEE International Conference on Robotics and Automation 3 (1997), 1922-1927. DOI10.1109/robot.1997.619069
  10. Gautier, M., Janot, A., Vandanjon, P.-O., 10.1109/tcst.2012.2185697, IEEE Trans. Control Systems Technol. 21 (2013), 428-444. DOI10.1109/tcst.2012.2185697
  11. Gautier, M., Khalil, W., 10.1177/027836499201100408, Int. J. Robotics Research 11 (1992), 362-375. DOI10.1177/027836499201100408
  12. Gilson, M., Garnier, H., Young, P. C., Hof, P. M. J. Van den, 10.1049/iet-cta.2009.0476, IET Control Theory Appl. 5 (2011), 1147-1154. MR2850670DOI10.1049/iet-cta.2009.0476
  13. Janot, A., Vandanjon, P.-O., Gautier, M., 10.1016/j.conengprac.2013.12.009, Control Engrg. Practice 25 (2014), 85-101. DOI10.1016/j.conengprac.2013.12.009
  14. Janot, A., Vandanjon, P.-O., Gautier, M., 10.1109/tcst.2013.2246163, IEEE Trans. Control Systems Technol. 22 (2014), 132-145. DOI10.1109/tcst.2013.2246163
  15. Khalil, W., Dombre, E., Modeling, Identification and Control of Robots., Butterworth-Heinemann, 2004. MR2459283
  16. Mahata, K., Garnier, H., 10.1016/j.automatica.2006.04.012, Automatica 42 (2006), 1477-1490. MR2246837DOI10.1016/j.automatica.2006.04.012
  17. Marcassus, N., Vandanjon, P.-O., Janot, A., Gautier, M., 10.1109/iros.2007.4399476, In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems 2007, pp. 2455-2460. DOI10.1109/iros.2007.4399476
  18. Norton, J. P., 10.1049/piee.1975.0183, In: Proc. of the Institution of Electrical Engineers 122 (1975), pp. 663-668. DOI10.1049/piee.1975.0183
  19. Rao, G. P., Unbehauen, H., 10.1049/ip-cta:20045250, IEE Proc. Control Theory Appl. 153 (2006), 185-220. DOI10.1049/ip-cta:20045250
  20. Söderström, T., Stoica, P., 10.1049/ip-cta:20045250, Springer, 1983. MR0719197DOI10.1049/ip-cta:20045250
  21. Favergues, Stäubli, Arm - TX Series 40 Family., Stäubli, 2015. 
  22. Wooldridge, J. M., Introductory Econometrics: A Modern Approach. Fourth edition., South-Western, 2008. 
  23. Young, P. C., 10.1016/0005-1098(70)90098-1, Automatica, 6 (1970), 271-287. DOI10.1016/0005-1098(70)90098-1
  24. Young, P. C., Recursive Estimation and Time-Series Analysis: An Introduction for The Student and Practitioner. Second edition., Springer Science and Business Media, 2012. MR3024956
  25. Young, P. C., 10.1016/j.automatica.2014.10.126, Automatica 52, (2015), 35-46. MR3310811DOI10.1016/j.automatica.2014.10.126
  26. Young, P. C., Foster, M., Lees, M., 10.1016/s1474-6670(17)49207-x, In: Proc. 12th IFAC World Congress 10 (1993), pp. 27-30. DOI10.1016/s1474-6670(17)49207-x
  27. Young, P. C., Jakeman, A. J., 10.1080/00207178008961080, Int. J. Control 29, 1-30; 30, 621-644, 31, (1979-1980), 741-764. DOI10.1080/00207178008961080

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.