On the spectrum of Robin Laplacian in a planar waveguide
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 2, page 485-501
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topRossini, Alex Ferreira. "On the spectrum of Robin Laplacian in a planar waveguide." Czechoslovak Mathematical Journal 69.2 (2019): 485-501. <http://eudml.org/doc/294503>.
@article{Rossini2019,
abstract = {We consider the Laplace operator in a planar waveguide, i.e. an infinite two-dimensional straight strip of constant width, with Robin boundary conditions. We study the essential spectrum of the corresponding Laplacian when the boundary coupling function has a limit at infinity. Furthermore, we derive sufficient conditions for the existence of discrete spectrum.},
author = {Rossini, Alex Ferreira},
journal = {Czechoslovak Mathematical Journal},
keywords = {planar waveguide; discrete spectrum; Robin boundary conditions},
language = {eng},
number = {2},
pages = {485-501},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the spectrum of Robin Laplacian in a planar waveguide},
url = {http://eudml.org/doc/294503},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Rossini, Alex Ferreira
TI - On the spectrum of Robin Laplacian in a planar waveguide
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 485
EP - 501
AB - We consider the Laplace operator in a planar waveguide, i.e. an infinite two-dimensional straight strip of constant width, with Robin boundary conditions. We study the essential spectrum of the corresponding Laplacian when the boundary coupling function has a limit at infinity. Furthermore, we derive sufficient conditions for the existence of discrete spectrum.
LA - eng
KW - planar waveguide; discrete spectrum; Robin boundary conditions
UR - http://eudml.org/doc/294503
ER -
References
top- Adams, R. A., 10.1016/S0079-8169(08)61376-8, Pure and Applied Mathematics 65, Academic Press, New York (1975). (1975) Zbl0314.46030MR0450957DOI10.1016/S0079-8169(08)61376-8
- Borisov, D., Cardone, G., 10.1063/1.3670875, J. Math. Phys. 52 (2011), 123513, 24 pages. (2011) Zbl1273.81100MR2907657DOI10.1063/1.3670875
- Borisov, D., Krejčiřík, D., 10.1007/s00020-008-1634-1, Integral Equations Oper. Theory 62 (2008), 489-515. (2008) Zbl1178.35141MR2470121DOI10.1007/s00020-008-1634-1
- Chenaud, B., Duclos, P., Freitas, P., Krejčiřík, D., 10.1016/j.difgeo.2005.05.001, Differ. Geom. Appl. 23 (2005), 95-105. (2005) Zbl1078.81022MR2158038DOI10.1016/j.difgeo.2005.05.001
- Oliveira, C. R. de, 10.1007/978-3-7643-8795-2, Progress in Mathematical Physics 54, Birkhäuser, Basel (2009). (2009) Zbl1165.47001MR2723496DOI10.1007/978-3-7643-8795-2
- Oliveira, C. R. de, Verri, A. A., 10.1016/j.jmaa.2011.03.022, J. Math. Anal. Appl. 381 (2011), 454-468. (2011) Zbl1220.35101MR2796223DOI10.1016/j.jmaa.2011.03.022
- Dittrich, J., Kříž, J., 10.1063/1.1491597, J. Math. Phys. 43 (2002), 3892-3915. (2002) Zbl1060.81019MR1915632DOI10.1063/1.1491597
- Duclos, P., Exner, P., 10.1142/S0129055X95000062, Rev. Math. Phys. 7 (1995), 73-102. (1995) Zbl0837.35037MR1310767DOI10.1142/S0129055X95000062
- Evans, L. C., 10.1090/gsm/019, Graduate Studies in Mathematics 19, AMS, Providence (1998). (1998) Zbl0902.35002MR1625845DOI10.1090/gsm/019
- Exner, P., Šeba, P., 10.1063/1.528538, J. Math. Phys. 30 (1989), 2574-2580. (1989) Zbl0693.46066MR1019002DOI10.1063/1.528538
- Freitas, P., Krejčiřík, D., 10.1007/s11040-007-9015-6, Math. Phys. Anal. Geom. 9 (2006), 335-352. (2006) Zbl1151.35061MR2329432DOI10.1007/s11040-007-9015-6
- Goldstone, J., Jaffe, R. L., 10.1103/PhysRevB.45.14100, Phys. Rev. B. 45 (1992), 14100-14107. (1992) DOI10.1103/PhysRevB.45.14100
- Jílek, M., 10.3842/SIGMA.2007.108, SIGMA, Symmetry Integrability Geom. Methods Appl. 3 (2007), Paper 108, 12 pages. (2007) Zbl1147.47035MR2366914DOI10.3842/SIGMA.2007.108
- Krejčiřík, D., 10.1051/cocv:2008035, ESAIM, Control Optim. Calc. Var. 15 (2009), 555-568. (2009) Zbl1173.35618MR2542572DOI10.1051/cocv:2008035
- Krejčiřík, D., Kříž, J., 10.2977/prims/1145475229, Publ. Res. Inst. Math. Sci. 41 (2005), 757-791. (2005) Zbl1113.35143MR2154341DOI10.2977/prims/1145475229
- Olendski, O., Mikhailovska, L., 10.1103/PhysRevE.81.036606, Phys. Rev. E. 81 (2010), 036606. (2010) DOI10.1103/PhysRevE.81.036606
- Reed, M., Simon, B., Methods of Modern Mathematical Physics. IV: Analysis of Operators, Academic Press, New York (1978). (1978) Zbl0401.47001MR0493421
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.