On the spectrum of Robin Laplacian in a planar waveguide

Alex Ferreira Rossini

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 2, page 485-501
  • ISSN: 0011-4642

Abstract

top
We consider the Laplace operator in a planar waveguide, i.e. an infinite two-dimensional straight strip of constant width, with Robin boundary conditions. We study the essential spectrum of the corresponding Laplacian when the boundary coupling function has a limit at infinity. Furthermore, we derive sufficient conditions for the existence of discrete spectrum.

How to cite

top

Rossini, Alex Ferreira. "On the spectrum of Robin Laplacian in a planar waveguide." Czechoslovak Mathematical Journal 69.2 (2019): 485-501. <http://eudml.org/doc/294503>.

@article{Rossini2019,
abstract = {We consider the Laplace operator in a planar waveguide, i.e. an infinite two-dimensional straight strip of constant width, with Robin boundary conditions. We study the essential spectrum of the corresponding Laplacian when the boundary coupling function has a limit at infinity. Furthermore, we derive sufficient conditions for the existence of discrete spectrum.},
author = {Rossini, Alex Ferreira},
journal = {Czechoslovak Mathematical Journal},
keywords = {planar waveguide; discrete spectrum; Robin boundary conditions},
language = {eng},
number = {2},
pages = {485-501},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the spectrum of Robin Laplacian in a planar waveguide},
url = {http://eudml.org/doc/294503},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Rossini, Alex Ferreira
TI - On the spectrum of Robin Laplacian in a planar waveguide
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 485
EP - 501
AB - We consider the Laplace operator in a planar waveguide, i.e. an infinite two-dimensional straight strip of constant width, with Robin boundary conditions. We study the essential spectrum of the corresponding Laplacian when the boundary coupling function has a limit at infinity. Furthermore, we derive sufficient conditions for the existence of discrete spectrum.
LA - eng
KW - planar waveguide; discrete spectrum; Robin boundary conditions
UR - http://eudml.org/doc/294503
ER -

References

top
  1. Adams, R. A., 10.1016/S0079-8169(08)61376-8, Pure and Applied Mathematics 65, Academic Press, New York (1975). (1975) Zbl0314.46030MR0450957DOI10.1016/S0079-8169(08)61376-8
  2. Borisov, D., Cardone, G., 10.1063/1.3670875, J. Math. Phys. 52 (2011), 123513, 24 pages. (2011) Zbl1273.81100MR2907657DOI10.1063/1.3670875
  3. Borisov, D., Krejčiřík, D., 10.1007/s00020-008-1634-1, Integral Equations Oper. Theory 62 (2008), 489-515. (2008) Zbl1178.35141MR2470121DOI10.1007/s00020-008-1634-1
  4. Chenaud, B., Duclos, P., Freitas, P., Krejčiřík, D., 10.1016/j.difgeo.2005.05.001, Differ. Geom. Appl. 23 (2005), 95-105. (2005) Zbl1078.81022MR2158038DOI10.1016/j.difgeo.2005.05.001
  5. Oliveira, C. R. de, 10.1007/978-3-7643-8795-2, Progress in Mathematical Physics 54, Birkhäuser, Basel (2009). (2009) Zbl1165.47001MR2723496DOI10.1007/978-3-7643-8795-2
  6. Oliveira, C. R. de, Verri, A. A., 10.1016/j.jmaa.2011.03.022, J. Math. Anal. Appl. 381 (2011), 454-468. (2011) Zbl1220.35101MR2796223DOI10.1016/j.jmaa.2011.03.022
  7. Dittrich, J., Kříž, J., 10.1063/1.1491597, J. Math. Phys. 43 (2002), 3892-3915. (2002) Zbl1060.81019MR1915632DOI10.1063/1.1491597
  8. Duclos, P., Exner, P., 10.1142/S0129055X95000062, Rev. Math. Phys. 7 (1995), 73-102. (1995) Zbl0837.35037MR1310767DOI10.1142/S0129055X95000062
  9. Evans, L. C., 10.1090/gsm/019, Graduate Studies in Mathematics 19, AMS, Providence (1998). (1998) Zbl0902.35002MR1625845DOI10.1090/gsm/019
  10. Exner, P., Šeba, P., 10.1063/1.528538, J. Math. Phys. 30 (1989), 2574-2580. (1989) Zbl0693.46066MR1019002DOI10.1063/1.528538
  11. Freitas, P., Krejčiřík, D., 10.1007/s11040-007-9015-6, Math. Phys. Anal. Geom. 9 (2006), 335-352. (2006) Zbl1151.35061MR2329432DOI10.1007/s11040-007-9015-6
  12. Goldstone, J., Jaffe, R. L., 10.1103/PhysRevB.45.14100, Phys. Rev. B. 45 (1992), 14100-14107. (1992) DOI10.1103/PhysRevB.45.14100
  13. Jílek, M., 10.3842/SIGMA.2007.108, SIGMA, Symmetry Integrability Geom. Methods Appl. 3 (2007), Paper 108, 12 pages. (2007) Zbl1147.47035MR2366914DOI10.3842/SIGMA.2007.108
  14. Krejčiřík, D., 10.1051/cocv:2008035, ESAIM, Control Optim. Calc. Var. 15 (2009), 555-568. (2009) Zbl1173.35618MR2542572DOI10.1051/cocv:2008035
  15. Krejčiřík, D., Kříž, J., 10.2977/prims/1145475229, Publ. Res. Inst. Math. Sci. 41 (2005), 757-791. (2005) Zbl1113.35143MR2154341DOI10.2977/prims/1145475229
  16. Olendski, O., Mikhailovska, L., 10.1103/PhysRevE.81.036606, Phys. Rev. E. 81 (2010), 036606. (2010) DOI10.1103/PhysRevE.81.036606
  17. Reed, M., Simon, B., Methods of Modern Mathematical Physics. IV: Analysis of Operators, Academic Press, New York (1978). (1978) Zbl0401.47001MR0493421

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.