The dyadic fractional diffusion kernel as a central limit
Hugo Aimar; Ivana Gómez; Federico Morana
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 1, page 235-255
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAimar, Hugo, Gómez, Ivana, and Morana, Federico. "The dyadic fractional diffusion kernel as a central limit." Czechoslovak Mathematical Journal 69.1 (2019): 235-255. <http://eudml.org/doc/294505>.
@article{Aimar2019,
abstract = {We obtain the fundamental solution kernel of dyadic diffusions in $\mathbb \{R\}^+$ as a central limit of dyadic mollification of iterations of stable Markov kernels. The main tool is provided by the substitution of classical Fourier analysis by Haar wavelet analysis.},
author = {Aimar, Hugo, Gómez, Ivana, Morana, Federico},
journal = {Czechoslovak Mathematical Journal},
keywords = {central limit theorem; dyadic diffusion; fractional diffusion; stable process; wavelet analysis},
language = {eng},
number = {1},
pages = {235-255},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The dyadic fractional diffusion kernel as a central limit},
url = {http://eudml.org/doc/294505},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Aimar, Hugo
AU - Gómez, Ivana
AU - Morana, Federico
TI - The dyadic fractional diffusion kernel as a central limit
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 235
EP - 255
AB - We obtain the fundamental solution kernel of dyadic diffusions in $\mathbb {R}^+$ as a central limit of dyadic mollification of iterations of stable Markov kernels. The main tool is provided by the substitution of classical Fourier analysis by Haar wavelet analysis.
LA - eng
KW - central limit theorem; dyadic diffusion; fractional diffusion; stable process; wavelet analysis
UR - http://eudml.org/doc/294505
ER -
References
top- Actis, M., Aimar, H., 10.1515/fca-2015-0046, Fract. Calc. Appl. Anal. 18 (2015), 762-788. (2015) Zbl1320.43003MR3351499DOI10.1515/fca-2015-0046
- Actis, M., Aimar, H., 10.1007/s10587-016-0249-y, Czech. Math. J. 66 (2016), 193-204. (2016) Zbl06587883MR3483232DOI10.1007/s10587-016-0249-y
- Aimar, H., Bongioanni, B., Gómez, I., 10.1016/j.jmaa.2013.05.001, J. Math. Anal. Appl. 407 (2013), 23-34. (2013) Zbl1306.35106MR3063102DOI10.1016/j.jmaa.2013.05.001
- Bucur, C., Valdinoci, E., 10.1007/978-3-319-28739-3, Lecture Notes of the Unione Matematica Italiana 20, Springer, Cham (2016). (2016) Zbl06559661MR3469920DOI10.1007/978-3-319-28739-3
- Caffarelli, L., Silvestre, L., 10.1080/03605300600987306, Commun. Partial Differ. Equations 32 (2007), 1245-1260. (2007) Zbl1143.26002MR2354493DOI10.1080/03605300600987306
- Chung, K. L., A Course in Probability Theory, Academic Press, San Diego (2001). (2001) Zbl0980.60001MR1796326
- Dipierro, S., Medina, M., Valdinoci, E., 10.1007/978-88-7642-601-8, Appunti. Scuola Normale Superiore di Pisa (Nuova Series) 15, Edizioni della Normale, Pisa (2017). (2017) Zbl06684812MR3617721DOI10.1007/978-88-7642-601-8
- Valdinoci, E., From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl., SMA 49 (2009), 33-44. (2009) Zbl1242.60047MR2584076
- Wojtaszczyk, P., 10.1017/CBO9780511623790, London Mathematical Society Student Texts 37, Cambridge University Press, Cambridge (1997). (1997) Zbl0865.42026MR1436437DOI10.1017/CBO9780511623790
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.