The dyadic fractional diffusion kernel as a central limit

Hugo Aimar; Ivana Gómez; Federico Morana

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 1, page 235-255
  • ISSN: 0011-4642

Abstract

top
We obtain the fundamental solution kernel of dyadic diffusions in + as a central limit of dyadic mollification of iterations of stable Markov kernels. The main tool is provided by the substitution of classical Fourier analysis by Haar wavelet analysis.

How to cite

top

Aimar, Hugo, Gómez, Ivana, and Morana, Federico. "The dyadic fractional diffusion kernel as a central limit." Czechoslovak Mathematical Journal 69.1 (2019): 235-255. <http://eudml.org/doc/294505>.

@article{Aimar2019,
abstract = {We obtain the fundamental solution kernel of dyadic diffusions in $\mathbb \{R\}^+$ as a central limit of dyadic mollification of iterations of stable Markov kernels. The main tool is provided by the substitution of classical Fourier analysis by Haar wavelet analysis.},
author = {Aimar, Hugo, Gómez, Ivana, Morana, Federico},
journal = {Czechoslovak Mathematical Journal},
keywords = {central limit theorem; dyadic diffusion; fractional diffusion; stable process; wavelet analysis},
language = {eng},
number = {1},
pages = {235-255},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The dyadic fractional diffusion kernel as a central limit},
url = {http://eudml.org/doc/294505},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Aimar, Hugo
AU - Gómez, Ivana
AU - Morana, Federico
TI - The dyadic fractional diffusion kernel as a central limit
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 235
EP - 255
AB - We obtain the fundamental solution kernel of dyadic diffusions in $\mathbb {R}^+$ as a central limit of dyadic mollification of iterations of stable Markov kernels. The main tool is provided by the substitution of classical Fourier analysis by Haar wavelet analysis.
LA - eng
KW - central limit theorem; dyadic diffusion; fractional diffusion; stable process; wavelet analysis
UR - http://eudml.org/doc/294505
ER -

References

top
  1. Actis, M., Aimar, H., 10.1515/fca-2015-0046, Fract. Calc. Appl. Anal. 18 (2015), 762-788. (2015) Zbl1320.43003MR3351499DOI10.1515/fca-2015-0046
  2. Actis, M., Aimar, H., 10.1007/s10587-016-0249-y, Czech. Math. J. 66 (2016), 193-204. (2016) Zbl06587883MR3483232DOI10.1007/s10587-016-0249-y
  3. Aimar, H., Bongioanni, B., Gómez, I., 10.1016/j.jmaa.2013.05.001, J. Math. Anal. Appl. 407 (2013), 23-34. (2013) Zbl1306.35106MR3063102DOI10.1016/j.jmaa.2013.05.001
  4. Bucur, C., Valdinoci, E., 10.1007/978-3-319-28739-3, Lecture Notes of the Unione Matematica Italiana 20, Springer, Cham (2016). (2016) Zbl06559661MR3469920DOI10.1007/978-3-319-28739-3
  5. Caffarelli, L., Silvestre, L., 10.1080/03605300600987306, Commun. Partial Differ. Equations 32 (2007), 1245-1260. (2007) Zbl1143.26002MR2354493DOI10.1080/03605300600987306
  6. Chung, K. L., A Course in Probability Theory, Academic Press, San Diego (2001). (2001) Zbl0980.60001MR1796326
  7. Dipierro, S., Medina, M., Valdinoci, E., 10.1007/978-88-7642-601-8, Appunti. Scuola Normale Superiore di Pisa (Nuova Series) 15, Edizioni della Normale, Pisa (2017). (2017) Zbl06684812MR3617721DOI10.1007/978-88-7642-601-8
  8. Valdinoci, E., From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl., SMA 49 (2009), 33-44. (2009) Zbl1242.60047MR2584076
  9. Wojtaszczyk, P., 10.1017/CBO9780511623790, London Mathematical Society Student Texts 37, Cambridge University Press, Cambridge (1997). (1997) Zbl0865.42026MR1436437DOI10.1017/CBO9780511623790

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.