Integral points on the elliptic curve
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 3, page 853-862
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYang, Hai, and Fu, Ruiqin. "Integral points on the elliptic curve $y^2=x^3-4p^2x$." Czechoslovak Mathematical Journal 69.3 (2019): 853-862. <http://eudml.org/doc/294510>.
@article{Yang2019,
abstract = {Let $p$ be a fixed odd prime. We combine some properties of quadratic and quartic Diophantine equations with elementary number theory methods to determine all integral points on the elliptic curve $E\colon y^2=x^3-4p^2x$. Further, let $N(p)$ denote the number of pairs of integral points $(x,\pm y)$ on $E$ with $y>0$. We prove that if $p\ge 17$, then $N(p)\le 4$ or $1$ depending on whether $p\equiv 1\hspace\{4.44443pt\}(\@mod \; 8)$ or $p\equiv -1\hspace\{4.44443pt\}(\@mod \; 8)$.},
author = {Yang, Hai, Fu, Ruiqin},
journal = {Czechoslovak Mathematical Journal},
keywords = {elliptic curve; integral point; quadratic equation; quartic Diophantine equation},
language = {eng},
number = {3},
pages = {853-862},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Integral points on the elliptic curve $y^2=x^3-4p^2x$},
url = {http://eudml.org/doc/294510},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Yang, Hai
AU - Fu, Ruiqin
TI - Integral points on the elliptic curve $y^2=x^3-4p^2x$
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 853
EP - 862
AB - Let $p$ be a fixed odd prime. We combine some properties of quadratic and quartic Diophantine equations with elementary number theory methods to determine all integral points on the elliptic curve $E\colon y^2=x^3-4p^2x$. Further, let $N(p)$ denote the number of pairs of integral points $(x,\pm y)$ on $E$ with $y>0$. We prove that if $p\ge 17$, then $N(p)\le 4$ or $1$ depending on whether $p\equiv 1\hspace{4.44443pt}(\@mod \; 8)$ or $p\equiv -1\hspace{4.44443pt}(\@mod \; 8)$.
LA - eng
KW - elliptic curve; integral point; quadratic equation; quartic Diophantine equation
UR - http://eudml.org/doc/294510
ER -
References
top- Bennett, M. A., 10.1142/S1793042113500474, Int. J. Number Theory 9 (2013), 1619-1640. (2013) Zbl1318.11047MR3103908DOI10.1142/S1793042113500474
- Bennett, M. A., Walsh, G., 10.1090/S0002-9939-99-05041-8, Proc. Am. Math. Soc. 127 (1999), 3481-3491. (1999) Zbl0980.11021MR1625772DOI10.1090/S0002-9939-99-05041-8
- Bremner, A., Silverman, J. H., Tzanakis, N., 10.1006/jnth.1999.2430, J. Number Theory 80 (2000), 187-208. (2000) Zbl1009.11035MR1740510DOI10.1006/jnth.1999.2430
- Draziotis, K. A., 10.1090/S0025-5718-06-01852-7, Math. Comput. 75 (2006), 1493-1505. (2006) Zbl1093.11020MR2219040DOI10.1090/S0025-5718-06-01852-7
- Draziotis, K., Poulakis, D., 10.1090/S0025-5718-06-01841-2, Math. Comput. 75 (2006), 1585-1593. (2006) Zbl1119.11073MR2219047DOI10.1090/S0025-5718-06-01841-2
- Draziotis, K., Poulakis, D., 10.1016/j.jnt.2008.12.001, J. Number Theory 129 (2009), 102-121 corrigendum 129 2009 739-740. (2009) Zbl1238.11038MR2468473DOI10.1016/j.jnt.2008.12.001
- Fujita, Y., Terai, N., 10.3836/tjm/1327931392, Tokyo J. Math. 34 (2011), 367-381. (2011) Zbl1253.11043MR2918912DOI10.3836/tjm/1327931392
- Fujita, Y., Terai, N., 10.4064/aa160-4-3, Acta Arith. 160 (2013), 333-348. (2013) Zbl1310.11036MR3119784DOI10.4064/aa160-4-3
- Hardy, G. H., Wright, E. M., An Introduction to the Theory of Numbers, The Clarendon Press, Oxford University Press, New York (1979). (1979) Zbl0423.10001MR0568909
- Spearman, B. K., Elliptic curves of rank two, Math. J. Okayama Univ. 49 (2007), 183-184. (2007) Zbl1132.11328MR2377178
- Spearman, B. K., 10.12988/ija.2007.07026, Int. J. Algebra 1 (2007), 247-250. (2007) Zbl1137.11040MR2342998DOI10.12988/ija.2007.07026
- Tunnell, J. B., 10.1007/BF01389327, Invent. Math. 72 (1983), 323-334. (1983) Zbl0515.10013MR0700775DOI10.1007/BF01389327
- Walsh, P. G., 10.3336/gm.44.1.04, Glas. Mat., III. Ser. 44 (2009), 83-87. (2009) Zbl1213.11125MR2525656DOI10.3336/gm.44.1.04
- Walsh, P. G., 10.4064/aa138-4-2, Acta Arith. 138 (2009), 317-327. (2009) Zbl1254.11035MR2534137DOI10.4064/aa138-4-2
- Walsh, P. G., 10.1216/RMJ-2011-41-1-311, Rocky Mt. J. Math. 41 (2011), 311-317. (2011) Zbl1234.11074MR2845948DOI10.1216/RMJ-2011-41-1-311
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.