Integral points on the elliptic curve y 2 = x 3 - 4 p 2 x

Hai Yang; Ruiqin Fu

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 3, page 853-862
  • ISSN: 0011-4642

Abstract

top
Let p be a fixed odd prime. We combine some properties of quadratic and quartic Diophantine equations with elementary number theory methods to determine all integral points on the elliptic curve E : y 2 = x 3 - 4 p 2 x . Further, let N ( p ) denote the number of pairs of integral points ( x , ± y ) on E with y > 0 . We prove that if p 17 , then N ( p ) 4 or 1 depending on whether p 1 ( mod 8 ) or p - 1 ( mod 8 ) .

How to cite

top

Yang, Hai, and Fu, Ruiqin. "Integral points on the elliptic curve $y^2=x^3-4p^2x$." Czechoslovak Mathematical Journal 69.3 (2019): 853-862. <http://eudml.org/doc/294510>.

@article{Yang2019,
abstract = {Let $p$ be a fixed odd prime. We combine some properties of quadratic and quartic Diophantine equations with elementary number theory methods to determine all integral points on the elliptic curve $E\colon y^2=x^3-4p^2x$. Further, let $N(p)$ denote the number of pairs of integral points $(x,\pm y)$ on $E$ with $y>0$. We prove that if $p\ge 17$, then $N(p)\le 4$ or $1$ depending on whether $p\equiv 1\hspace\{4.44443pt\}(\@mod \; 8)$ or $p\equiv -1\hspace\{4.44443pt\}(\@mod \; 8)$.},
author = {Yang, Hai, Fu, Ruiqin},
journal = {Czechoslovak Mathematical Journal},
keywords = {elliptic curve; integral point; quadratic equation; quartic Diophantine equation},
language = {eng},
number = {3},
pages = {853-862},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Integral points on the elliptic curve $y^2=x^3-4p^2x$},
url = {http://eudml.org/doc/294510},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Yang, Hai
AU - Fu, Ruiqin
TI - Integral points on the elliptic curve $y^2=x^3-4p^2x$
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 853
EP - 862
AB - Let $p$ be a fixed odd prime. We combine some properties of quadratic and quartic Diophantine equations with elementary number theory methods to determine all integral points on the elliptic curve $E\colon y^2=x^3-4p^2x$. Further, let $N(p)$ denote the number of pairs of integral points $(x,\pm y)$ on $E$ with $y>0$. We prove that if $p\ge 17$, then $N(p)\le 4$ or $1$ depending on whether $p\equiv 1\hspace{4.44443pt}(\@mod \; 8)$ or $p\equiv -1\hspace{4.44443pt}(\@mod \; 8)$.
LA - eng
KW - elliptic curve; integral point; quadratic equation; quartic Diophantine equation
UR - http://eudml.org/doc/294510
ER -

References

top
  1. Bennett, M. A., 10.1142/S1793042113500474, Int. J. Number Theory 9 (2013), 1619-1640. (2013) Zbl1318.11047MR3103908DOI10.1142/S1793042113500474
  2. Bennett, M. A., Walsh, G., 10.1090/S0002-9939-99-05041-8, Proc. Am. Math. Soc. 127 (1999), 3481-3491. (1999) Zbl0980.11021MR1625772DOI10.1090/S0002-9939-99-05041-8
  3. Bremner, A., Silverman, J. H., Tzanakis, N., 10.1006/jnth.1999.2430, J. Number Theory 80 (2000), 187-208. (2000) Zbl1009.11035MR1740510DOI10.1006/jnth.1999.2430
  4. Draziotis, K. A., 10.1090/S0025-5718-06-01852-7, Math. Comput. 75 (2006), 1493-1505. (2006) Zbl1093.11020MR2219040DOI10.1090/S0025-5718-06-01852-7
  5. Draziotis, K., Poulakis, D., 10.1090/S0025-5718-06-01841-2, Math. Comput. 75 (2006), 1585-1593. (2006) Zbl1119.11073MR2219047DOI10.1090/S0025-5718-06-01841-2
  6. Draziotis, K., Poulakis, D., 10.1016/j.jnt.2008.12.001, J. Number Theory 129 (2009), 102-121 corrigendum 129 2009 739-740. (2009) Zbl1238.11038MR2468473DOI10.1016/j.jnt.2008.12.001
  7. Fujita, Y., Terai, N., 10.3836/tjm/1327931392, Tokyo J. Math. 34 (2011), 367-381. (2011) Zbl1253.11043MR2918912DOI10.3836/tjm/1327931392
  8. Fujita, Y., Terai, N., 10.4064/aa160-4-3, Acta Arith. 160 (2013), 333-348. (2013) Zbl1310.11036MR3119784DOI10.4064/aa160-4-3
  9. Hardy, G. H., Wright, E. M., An Introduction to the Theory of Numbers, The Clarendon Press, Oxford University Press, New York (1979). (1979) Zbl0423.10001MR0568909
  10. Spearman, B. K., Elliptic curves y 2 = x 3 - p x of rank two, Math. J. Okayama Univ. 49 (2007), 183-184. (2007) Zbl1132.11328MR2377178
  11. Spearman, B. K., 10.12988/ija.2007.07026, Int. J. Algebra 1 (2007), 247-250. (2007) Zbl1137.11040MR2342998DOI10.12988/ija.2007.07026
  12. Tunnell, J. B., 10.1007/BF01389327, Invent. Math. 72 (1983), 323-334. (1983) Zbl0515.10013MR0700775DOI10.1007/BF01389327
  13. Walsh, P. G., 10.3336/gm.44.1.04, Glas. Mat., III. Ser. 44 (2009), 83-87. (2009) Zbl1213.11125MR2525656DOI10.3336/gm.44.1.04
  14. Walsh, P. G., 10.4064/aa138-4-2, Acta Arith. 138 (2009), 317-327. (2009) Zbl1254.11035MR2534137DOI10.4064/aa138-4-2
  15. Walsh, P. G., 10.1216/RMJ-2011-41-1-311, Rocky Mt. J. Math. 41 (2011), 311-317. (2011) Zbl1234.11074MR2845948DOI10.1216/RMJ-2011-41-1-311

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.