On n -exact categories

Said Manjra

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 4, page 1089-1099
  • ISSN: 0011-4642

Abstract

top
An n -exact category is a pair consisting of an additive category and a class of sequences with n + 2 terms satisfying certain axioms. We introduce n -weakly idempotent complete categories. Then we prove that an additive n -weakly idempotent complete category together with the class 𝒞 n of all contractible sequences with n + 2 terms is an n -exact category. Some properties of the class 𝒞 n are also discussed.

How to cite

top

Manjra, Said. "On $n$-exact categories." Czechoslovak Mathematical Journal 69.4 (2019): 1089-1099. <http://eudml.org/doc/294517>.

@article{Manjra2019,
abstract = {An $n$-exact category is a pair consisting of an additive category and a class of sequences with $n+2$ terms satisfying certain axioms. We introduce $n$-weakly idempotent complete categories. Then we prove that an additive $n$-weakly idempotent complete category together with the class $\mathcal \{C\}_n$ of all contractible sequences with $n+2$ terms is an $n$-exact category. Some properties of the class $\mathcal \{C\}_n$ are also discussed.},
author = {Manjra, Said},
journal = {Czechoslovak Mathematical Journal},
keywords = {$n$-exact category; contractible sequence; idempotent complete category},
language = {eng},
number = {4},
pages = {1089-1099},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On $n$-exact categories},
url = {http://eudml.org/doc/294517},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Manjra, Said
TI - On $n$-exact categories
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 1089
EP - 1099
AB - An $n$-exact category is a pair consisting of an additive category and a class of sequences with $n+2$ terms satisfying certain axioms. We introduce $n$-weakly idempotent complete categories. Then we prove that an additive $n$-weakly idempotent complete category together with the class $\mathcal {C}_n$ of all contractible sequences with $n+2$ terms is an $n$-exact category. Some properties of the class $\mathcal {C}_n$ are also discussed.
LA - eng
KW - $n$-exact category; contractible sequence; idempotent complete category
UR - http://eudml.org/doc/294517
ER -

References

top
  1. Borceux, F., 10.1017/CBO9780511525865, Encyclopedia of Mathematics and Its Applications, 50, Cambridge University Press, Cambridge (2008). (2008) Zbl1143.18002MR1313497DOI10.1017/CBO9780511525865
  2. Bühler, T., 10.1016/j.exmath.2009.04.004, Expo. Math. 28 (2010), 1-69. (2010) Zbl1192.18007MR2606234DOI10.1016/j.exmath.2009.04.004
  3. Freyd, P., 10.1007/978-3-642-99902-4_6, Proc. Conf. Categor. Algebra, La Jolla 1965 S. Eilenberg et al. Springer, Berlin (1966), 173-176. (1966) Zbl0195.52902MR0206069DOI10.1007/978-3-642-99902-4_6
  4. Geiss, C., Keller, B., Oppermann, S., 10.1515/crelle.2011.177, J. Reine Angew. Math. 675 (2013), 101-120. (2013) Zbl1271.18013MR3021448DOI10.1515/crelle.2011.177
  5. Iyama, O., 10.1016/j.aim.2006.06.003, Adv. Math. 210 (2007), 51-82. (2007) Zbl1115.16006MR2298820DOI10.1016/j.aim.2006.06.003
  6. Iyama, O., 10.1016/j.aim.2006.06.002, Adv. Math. 210 (2007), 22-50. (2007) Zbl1115.16005MR2298819DOI10.1016/j.aim.2006.06.002
  7. Iyama, O., 10.1016/j.aim.2010.03.004, Adv. Math. 226 (2011), 1-61. (2011) Zbl1233.16014MR2735750DOI10.1016/j.aim.2010.03.004
  8. Iyama, O., Yoshino, Y., 10.1007/s00222-007-0096-4, Invent. Math. 172 (2008), 117-168. (2008) Zbl1140.18007MR2385669DOI10.1007/s00222-007-0096-4
  9. Jasso, G., 10.1007/s00209-016-1619-8, Math. Z. 283 (2016), 703-759. (2016) Zbl1356.18005MR3519980DOI10.1007/s00209-016-1619-8
  10. Lin, Z., 10.1080/00927872.2016.1175591, Commun. Algebra 45 (2017), 828-840. (2017) Zbl1371.18010MR3562541DOI10.1080/00927872.2016.1175591
  11. Neeman, A., 10.1016/0021-8693(90)90296-z, J. Algebra 135 (1990), 388-394. (1990) Zbl0753.18004MR1080854DOI10.1016/0021-8693(90)90296-z
  12. Quillen, D., 10.1007/bfb0067053, Algebraic -Theory I: Higher -theories H. Bass Lecture Notes in Mathematics 341, Springer, Berlin (1973), 85-147. (1973) Zbl0292.18004MR0338129DOI10.1007/bfb0067053
  13. Thomason, R. W., Trobaugh, T., 10.1007/978-0-8176-4576-2_10, The Grothendieck Festschrift, Vol. III P. Cartier et al. Progress in Mathematics 88, Birkhäuser, Boston (1990), 247-435. (1990) Zbl0731.14001MR1106918DOI10.1007/978-0-8176-4576-2_10

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.