Some stochastic comparison results for series and parallel systems with heterogeneous Pareto type components
Lakshmi Kanta Patra; Suchandan Kayal; Phalguni Nanda
Applications of Mathematics (2018)
- Volume: 63, Issue: 1, page 55-77
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topPatra, Lakshmi Kanta, Kayal, Suchandan, and Nanda, Phalguni. "Some stochastic comparison results for series and parallel systems with heterogeneous Pareto type components." Applications of Mathematics 63.1 (2018): 55-77. <http://eudml.org/doc/294518>.
@article{Patra2018,
abstract = {We focus on stochastic comparisons of lifetimes of series and parallel systems consisting of independent and heterogeneous new Pareto type components. Sufficient conditions involving majorization type partial orders are provided to obtain stochastic comparisons in terms of various magnitude and dispersive orderings which include usual stochastic order, hazard rate order, dispersive order and right spread order. The usual stochastic order of lifetimes of series systems with possibly different scale and shape parameters is studied when its matrix of parameters changes to another matrix in certain sense.},
author = {Patra, Lakshmi Kanta, Kayal, Suchandan, Nanda, Phalguni},
journal = {Applications of Mathematics},
keywords = {stochastic order; parallel system; series system; majorization; multivariate chain majorization; Pareto type distribution; $T$-transform matrix},
language = {eng},
number = {1},
pages = {55-77},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some stochastic comparison results for series and parallel systems with heterogeneous Pareto type components},
url = {http://eudml.org/doc/294518},
volume = {63},
year = {2018},
}
TY - JOUR
AU - Patra, Lakshmi Kanta
AU - Kayal, Suchandan
AU - Nanda, Phalguni
TI - Some stochastic comparison results for series and parallel systems with heterogeneous Pareto type components
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 1
SP - 55
EP - 77
AB - We focus on stochastic comparisons of lifetimes of series and parallel systems consisting of independent and heterogeneous new Pareto type components. Sufficient conditions involving majorization type partial orders are provided to obtain stochastic comparisons in terms of various magnitude and dispersive orderings which include usual stochastic order, hazard rate order, dispersive order and right spread order. The usual stochastic order of lifetimes of series systems with possibly different scale and shape parameters is studied when its matrix of parameters changes to another matrix in certain sense.
LA - eng
KW - stochastic order; parallel system; series system; majorization; multivariate chain majorization; Pareto type distribution; $T$-transform matrix
UR - http://eudml.org/doc/294518
ER -
References
top- Arnold, B. C., 10.1214/0883423060000000097, Stat. Sci. 22 (2007), 407-413. (2007) Zbl1246.01010MR2416816DOI10.1214/0883423060000000097
- Balakrishnan, N., Haidari, A., Masoumifard, K., 10.1109/tr.2014.2354192, IEEE Trans. Reliab. 64 (2015), 333-348. (2015) DOI10.1109/tr.2014.2354192
- Balakrishnan, N., (eds.), C. R. Rao, 10.1016/S0169-7161(98)17001-3, Handbook of Statistics 17, North-Holland, Amsterdam (1998). (1998) Zbl0897.00016MR1672283DOI10.1016/S0169-7161(98)17001-3
- Balakrishnan, N., Zhao, P., 10.1016/j.jmva.2011.05.001, J. Multivariate Anal. 113 (2013), 153-160. (2013) Zbl1253.60022MR2984362DOI10.1016/j.jmva.2011.05.001
- Barmalzan, G., Najafabadi, A. T. Payandeh, Balakrishnan, N., 10.1016/j.spl.2015.11.009, Stat. Probab. Lett. 110 (2016), 1-7. (2016) Zbl06572266MR3474731DOI10.1016/j.spl.2015.11.009
- Bourguignon, M., Saulo, H., Fernandez, R. Nobre, 10.1016/j.physa.2016.03.043, Physica A: Statistical Mechanics and its Applications 457 (2016), 166-175. (2016) MR3493327DOI10.1016/j.physa.2016.03.043
- David, H. A., Nagaraja, H. N., 10.1002/0471722162, Wiley Series in Probability and Statistics, John Wiley & Sons, Chichester (2003). (2003) Zbl1053.62060MR1994955DOI10.1002/0471722162
- Dykstra, R., Kochar, S., Rojo, J., 10.1016/S0378-3758(97)00058-X, J. Stat. Plann. Inference 65 (1997), 203-211. (1997) Zbl0915.62044MR1622774DOI10.1016/S0378-3758(97)00058-X
- Fang, L., Balakrishnan, N., 10.1007/s00184-015-0573-5, Metrika 79 (2016), 693-703. (2016) Zbl1373.62494MR3518582DOI10.1007/s00184-015-0573-5
- Fang, L., Balakrishnan, N., 10.1080/02331888.2016.1142545, Statistics 50 (2016), 1195-1205. (2016) Zbl06673721MR3552988DOI10.1080/02331888.2016.1142545
- Fang, L., Wang, Y., 10.3390/sym9010010, Symmetry 9 (2017), Paper No. 10, 9 pages. (2017) MR3618925DOI10.3390/sym9010010
- Fang, L., Zhang, X., 10.1016/j.jkss.2011.05.004, J. Korean Stat. Soc. 41 13-16 (2012). (2012) Zbl1296.62106MR2933211DOI10.1016/j.jkss.2011.05.004
- Fang, L., Zhang, X., 10.1016/j.spl.2014.10.017, Stat. Probab. Lett. 97 (2015), 25-31. (2015) Zbl1314.60063MR3299747DOI10.1016/j.spl.2014.10.017
- Fang, L., Zhu, X., Balakrishnan, N., 10.1016/j.spl.2016.01.021, Stat. Probab. Lett. 112 131-136 (2016). (2016) Zbl1338.60051MR3475497DOI10.1016/j.spl.2016.01.021
- Gupta, N., Patra, L. K., Kumar, S., 10.1016/j.orl.2015.09.009, Oper. Res. Lett. 43 612-615 (2015). (2015) MR3423556DOI10.1016/j.orl.2015.09.009
- Hardy, G. H., Littlewood, J. E., Polya, G., Inequalities, University Press, Cambridge (1934). (1934) Zbl0010.10703MR0944909
- Khaledi, B.-E., Farsinezhad, S., Kochar, S. C., 10.1016/j.jspi.2010.06.006, J. Stat. Plann. Inference 141 (2011), 276-286. (2011) Zbl1207.62108MR2719493DOI10.1016/j.jspi.2010.06.006
- Khaledi, B.-E., Kochar, S., 10.1080/03610920601077212, Commun. Stat., Theory Methods 36 (2007), 1441-1449. (2007) Zbl1119.60013MR2405269DOI10.1080/03610920601077212
- Marshall, A. W., Olkin, I., 10.1016/c2009-0-22048-4, Mathematics in Science and Engineering 143, Academic Press, New York (1979). (1979) Zbl0437.26007MR0552278DOI10.1016/c2009-0-22048-4
- Nadarajah, S., Jiang, X., Chu, J., 10.1007/s10479-017-2444-0, Ann. Oper. Res. 254 191-209 (2017). (2017) Zbl06764423MR3665743DOI10.1007/s10479-017-2444-0
- Pečarić, J. E., Proschan, F., Tong, Y. L., 10.1016/s0076-5392(08)x6162-4, Mathematics in Science and Engineering 187, Academic Press, Boston (1992). (1992) Zbl0749.26004MR1162312DOI10.1016/s0076-5392(08)x6162-4
- Shaked, M., Shanthikumar, J. G., 10.1007/978-0-387-34675-5, Springer Series in Statistics, New York (2007). (2007) Zbl1111.62016MR2265633DOI10.1007/978-0-387-34675-5
- Zhao, P., Balakrishnan, N., 10.1007/s00184-010-0297-5, Metrika 74 203-210 (2011). (2011) Zbl05963332MR2822156DOI10.1007/s00184-010-0297-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.