Characterizations of continuous distributions through inequalities involving the expected values of selected functions

Faranak Goodarzi; Mohammad Amini; Gholam Reza Mohtashami Borzadaran

Applications of Mathematics (2017)

  • Volume: 62, Issue: 5, page 493-507
  • ISSN: 0862-7940

Abstract

top
Nanda (2010) and Bhattacharjee et al. (2013) characterized a few distributions with help of the failure rate, mean residual, log-odds rate and aging intensity functions. In this paper, we generalize their results and characterize some distributions through functions used by them and Glaser’s function. Kundu and Ghosh (2016) obtained similar results using reversed hazard rate, expected inactivity time and reversed aging intensity functions. We also, via w ( · ) -function defined by Cacoullos and Papathanasiou (1989), characterize exponential and logistic distributions, as well as Type 3 extreme value distribution and obtain bounds for the expected values of selected functions in reliability theory. Moreover, a bound for the varentropy of random variable X is provided.

How to cite

top

Goodarzi, Faranak, Amini, Mohammad, and Mohtashami Borzadaran, Gholam Reza. "Characterizations of continuous distributions through inequalities involving the expected values of selected functions." Applications of Mathematics 62.5 (2017): 493-507. <http://eudml.org/doc/294520>.

@article{Goodarzi2017,
abstract = {Nanda (2010) and Bhattacharjee et al. (2013) characterized a few distributions with help of the failure rate, mean residual, log-odds rate and aging intensity functions. In this paper, we generalize their results and characterize some distributions through functions used by them and Glaser’s function. Kundu and Ghosh (2016) obtained similar results using reversed hazard rate, expected inactivity time and reversed aging intensity functions. We also, via $w(\cdot )$-function defined by Cacoullos and Papathanasiou (1989), characterize exponential and logistic distributions, as well as Type 3 extreme value distribution and obtain bounds for the expected values of selected functions in reliability theory. Moreover, a bound for the varentropy of random variable $X$ is provided.},
author = {Goodarzi, Faranak, Amini, Mohammad, Mohtashami Borzadaran, Gholam Reza},
journal = {Applications of Mathematics},
keywords = {characterization; hazard rate; mean residual life function; reversed hazard rate; expected inactivity time; log-odds rate; Glaser's function},
language = {eng},
number = {5},
pages = {493-507},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Characterizations of continuous distributions through inequalities involving the expected values of selected functions},
url = {http://eudml.org/doc/294520},
volume = {62},
year = {2017},
}

TY - JOUR
AU - Goodarzi, Faranak
AU - Amini, Mohammad
AU - Mohtashami Borzadaran, Gholam Reza
TI - Characterizations of continuous distributions through inequalities involving the expected values of selected functions
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 5
SP - 493
EP - 507
AB - Nanda (2010) and Bhattacharjee et al. (2013) characterized a few distributions with help of the failure rate, mean residual, log-odds rate and aging intensity functions. In this paper, we generalize their results and characterize some distributions through functions used by them and Glaser’s function. Kundu and Ghosh (2016) obtained similar results using reversed hazard rate, expected inactivity time and reversed aging intensity functions. We also, via $w(\cdot )$-function defined by Cacoullos and Papathanasiou (1989), characterize exponential and logistic distributions, as well as Type 3 extreme value distribution and obtain bounds for the expected values of selected functions in reliability theory. Moreover, a bound for the varentropy of random variable $X$ is provided.
LA - eng
KW - characterization; hazard rate; mean residual life function; reversed hazard rate; expected inactivity time; log-odds rate; Glaser's function
UR - http://eudml.org/doc/294520
ER -

References

top
  1. Asadi, M., Berred, A., 10.1080/02331888.2010.540666, Statistics 46 (2012), 405-417. (2012) Zbl1241.62140MR2929163DOI10.1080/02331888.2010.540666
  2. Asadi, M., Zohrevand, Y., 10.1016/j.jspi.2006.06.035, J. Stat. Plann. Inference 137 (2007), 1931-1941. (2007) Zbl1118.62006MR2323874DOI10.1016/j.jspi.2006.06.035
  3. Bhattacharjee, M. C., 10.1137/0603006, SIAM J. Algebraic Discrete Methods 3 (1982), 56-65. (1982) Zbl0495.60091MR0644957DOI10.1137/0603006
  4. Bhattacharjee, S., Nanda, A. K., Misra, S. K., 10.1016/j.spl.2013.05.022, Stat. Probab. Lett. 83 (2013), 2113-2118. (2013) Zbl1285.60010MR3079054DOI10.1016/j.spl.2013.05.022
  5. Cacoullos, T., Papathanasiou, V., 10.1016/0167-7152(85)90014-8, Stat. Probab. Lett. 3 (1985), 175-184. (1985) Zbl0572.60021MR0801687DOI10.1016/0167-7152(85)90014-8
  6. Cacoullos, T., Papathanasiou, V., 10.1016/0167-7152(89)90050-3, Stat. Probab. Lett. 7 (1989), 351-356. (1989) Zbl0677.62012MR1001133DOI10.1016/0167-7152(89)90050-3
  7. Chandra, N. K., Roy, D., 10.1017/S0269964801151077, Probab. Eng. Inf. Sci. 15 (2001), 95-102. (2001) Zbl1087.62510MR1825537DOI10.1017/S0269964801151077
  8. Fradelizi, M., Madiman, M., Wang, L., 10.1007/978-3-319-40519-3_3, High Dimensional Probability VII Progress in Probability 71, Birkhäuser, Springer C. Houdré, et al. (2016), 45-60. (2016) Zbl1358.60036MR3565259DOI10.1007/978-3-319-40519-3_3
  9. Guess, F., Proschan, F., 10.1016/S0169-7161(88)07014-2, P. R. Krishnaiah, et al. Handbook of Statistics 7 Elsevier Science Publishers, Atlanta 215-224 (1988). (1988) DOI10.1016/S0169-7161(88)07014-2
  10. Gupta, R. C., 10.1007/978-94-009-8552-0_26, Statistical Distributions in Scientific Work, Vol. 5 (Trieste, 1980) Proc. NATO Adv. Study Inst. (Trieste 1980), Reidel, Dordrecht (1981), 327-334. (1981) Zbl0474.62092MR0656346DOI10.1007/978-94-009-8552-0_26
  11. Gupta, R. C., Kirmani, S. N. U. A., 10.1081/STA-200039060, Commun. Stat., Theory Methods 33 (2004), 3115-3131. (2004) Zbl1087.62014MR2138677DOI10.1081/STA-200039060
  12. Gupta, R. C., Warren, R., 10.1081/STA-100105704, Commun. Stat., Theory Methods 30 (2001), 1903-1920. (2001) Zbl0991.62085MR1861623DOI10.1081/STA-100105704
  13. Gut, A., 10.1007/978-1-4614-4708-5, Springer Texts in Statistics, Springer, New York (2013). (2013) Zbl1267.60001MR2977961DOI10.1007/978-1-4614-4708-5
  14. Hall, W. J., Wellner, J. A., Mean residual life, Statistics and Related Topics M. Csörgö, et al. Proc. Int. Symp. (Ottawa 1980), North Holland Publishing, Amsterdam 169-184 (1981). (1981) Zbl0481.62078MR0665274
  15. Iwińska, M., Szymkowiak, M., 10.1080/03610926.2014.985837, Commun. Stat., Theory Methods 46 (2017), 69-74. (2017) Zbl06708605MR3553015DOI10.1080/03610926.2014.985837
  16. Jiang, R., Ji, P., Xiao, X., 10.1016/S0951-8320(02)00175-8, Reliab. Eng. Syst. Saf. 79 (2003), 113-116. (2003) DOI10.1016/S0951-8320(02)00175-8
  17. Johnson, O., Information Theory and the Central Limit Theorem, Imperial College Press, London (2004). (2004) Zbl1061.60019MR2109042
  18. Kundu, C., Ghosh, A., 10.1080/03610926.2016.1183784, Commun. Stat., Theory Methods 46 (2017), 8468-8478. (2017) MR3680770DOI10.1080/03610926.2016.1183784
  19. Kundu, C., Nanda, A. K., Maiti, S. S., 10.1016/j.jspi.2009.11.011, J. Stat. Plann. Inference 140 (2010), 1280-1291. (2010) Zbl1186.60012MR2581130DOI10.1016/j.jspi.2009.11.011
  20. Nanda, A. K., 10.1016/j.spl.2010.01.006, Stat. Probab. Lett. 80 (2010), 752-755. (2010) Zbl1185.62031MR2608812DOI10.1016/j.spl.2010.01.006
  21. Navarro, J., Aguila, Y. del, Asadi, M., 10.1016/j.jspi.2009.07.015, J. Stat. Plann. Inference 140 (2010), 310-322. (2010) Zbl1177.62005MR2568141DOI10.1016/j.jspi.2009.07.015
  22. Wang, L., Heat Capacity Bound, Energy Fluctuations and Convexity, Ph.D. Thesis, Yale University (2014). (2014) MR3337578

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.