Higher simple structure sets of lens spaces with the fundamental group of arbitrary order

L’udovít Balko; Tibor Macko; Martin Niepel; Tomáš Rusin

Archivum Mathematicum (2019)

  • Volume: 055, Issue: 5, page 267-280
  • ISSN: 0044-8753

Abstract

top
Extending work of many authors we calculate the higher simple structure sets of lens spaces in the sense of surgery theory with the fundamental group of arbitrary order. As a corollary we also obtain a calculation of the simple structure sets of the products of lens spaces and spheres of dimension grater or equal to 3 .

How to cite

top

Balko, L’udovít, et al. "Higher simple structure sets of lens spaces with the fundamental group of arbitrary order." Archivum Mathematicum 055.5 (2019): 267-280. <http://eudml.org/doc/294524>.

@article{Balko2019,
abstract = {Extending work of many authors we calculate the higher simple structure sets of lens spaces in the sense of surgery theory with the fundamental group of arbitrary order. As a corollary we also obtain a calculation of the simple structure sets of the products of lens spaces and spheres of dimension grater or equal to $3$.},
author = {Balko, L’udovít, Macko, Tibor, Niepel, Martin, Rusin, Tomáš},
journal = {Archivum Mathematicum},
keywords = {fake lens space; higher structure set; $\rho $-invariant; surgery},
language = {eng},
number = {5},
pages = {267-280},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Higher simple structure sets of lens spaces with the fundamental group of arbitrary order},
url = {http://eudml.org/doc/294524},
volume = {055},
year = {2019},
}

TY - JOUR
AU - Balko, L’udovít
AU - Macko, Tibor
AU - Niepel, Martin
AU - Rusin, Tomáš
TI - Higher simple structure sets of lens spaces with the fundamental group of arbitrary order
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 5
SP - 267
EP - 280
AB - Extending work of many authors we calculate the higher simple structure sets of lens spaces in the sense of surgery theory with the fundamental group of arbitrary order. As a corollary we also obtain a calculation of the simple structure sets of the products of lens spaces and spheres of dimension grater or equal to $3$.
LA - eng
KW - fake lens space; higher structure set; $\rho $-invariant; surgery
UR - http://eudml.org/doc/294524
ER -

References

top
  1. Balko, L’., Macko, T., Niepel, M., Rusin, T., Higher simple structure sets of lens spaces with the fundamental group of order 2 K ., Topology Appl. 263 (2019), 299–320 (English). (2019) MR3969225
  2. Hambleton, I., Taylor, L.R., A guide to the calculation of the surgery obstruction groups for finite groups, Surveys on surgery theory, Vol. 1, Ann. of Math. Stud., vol. 145, Princeton Univ. Press, Princeton, NJ, 2000, pp. 225–274. MR MR1747537 (2001e:19007) (2000) MR1747537
  3. López de Medrano, S., Involutions on manifolds, Springer-Verlag, New York, 1971, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 59. MR MR0298698 (45 #7747) (1971) MR0298698
  4. Macko, T., Wegner, Ch., 10.2140/agt.2009.9.1837, Algebr. Geom. Topol. 9 (2009), no. 3, 1837–1883. MR 2550097 (2010k:57067) DOI: http://dx.doi.org/10.2140/agt.2009.9.1837 (2009) MR2550097DOI10.2140/agt.2009.9.1837
  5. Macko, T., Wegner, Ch., 10.1515/form.2011.038, Forum Math. 23 (2011), no. 5, 1053–1091. MR 2836378 DOI: http://dx.doi.org/10.1515/FORM.2011.038 (2011) MR2836378DOI10.1515/form.2011.038
  6. Madsen, I., Milgram, R.J., The classifying spaces for surgery and cobordism of manifolds, Annals of Mathematics Studies, vol. 92, Princeton University Press, Princeton, N.J., 1979. MR MR548575 (81b:57014) (1979) MR0548575
  7. Madsen, I., Rothenberg, M., 10.7146/math.scand.a-12253, Math. Scand. 64 (1989), no. 2, 161–218. MR 91d:57024 (1989) MR1037458DOI10.7146/math.scand.a-12253
  8. Quinn, F., A geometric formulation of surgery, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 500–511. MR 43 #8087 (1970) MR0282375
  9. Wall, C.T.C., Surgery on compact manifolds, second ed., Mathematical Surveys and Monographs, vol. 69, American Mathematical Society, Providence, RI, 1999, Edited and with a foreword by A. A. Ranicki. MR MR1687388 (2000a:57089) (1999) MR1687388

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.