Geometric properties of Lie hypersurfaces in a complex hyperbolic space
Young Ho Kim; Sadahiro Maeda; Hiromasa Tanabe
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 4, page 983-996
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKim, Young Ho, Maeda, Sadahiro, and Tanabe, Hiromasa. "Geometric properties of Lie hypersurfaces in a complex hyperbolic space." Czechoslovak Mathematical Journal 69.4 (2019): 983-996. <http://eudml.org/doc/294532>.
@article{Kim2019,
abstract = {We study homogeneous real hypersurfaces having no focal submanifolds in a complex hyperbolic space. They are called Lie hypersurfaces in this space. We clarify the geometry of Lie hypersurfaces in terms of their sectional curvatures, the behavior of the characteristic vector field and their holomorphic distributions.},
author = {Kim, Young Ho, Maeda, Sadahiro, Tanabe, Hiromasa},
journal = {Czechoslovak Mathematical Journal},
keywords = {complex hyperbolic space; homogeneous real hypersurface; Lie hypersurface; homogeneous ruled real hypersurface; equidistant hypersurface; horosphere; sectional curvature; shape operator; integral curve of the characteristic vector field; holomorphic distributions; homogeneous curve},
language = {eng},
number = {4},
pages = {983-996},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Geometric properties of Lie hypersurfaces in a complex hyperbolic space},
url = {http://eudml.org/doc/294532},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Kim, Young Ho
AU - Maeda, Sadahiro
AU - Tanabe, Hiromasa
TI - Geometric properties of Lie hypersurfaces in a complex hyperbolic space
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 983
EP - 996
AB - We study homogeneous real hypersurfaces having no focal submanifolds in a complex hyperbolic space. They are called Lie hypersurfaces in this space. We clarify the geometry of Lie hypersurfaces in terms of their sectional curvatures, the behavior of the characteristic vector field and their holomorphic distributions.
LA - eng
KW - complex hyperbolic space; homogeneous real hypersurface; Lie hypersurface; homogeneous ruled real hypersurface; equidistant hypersurface; horosphere; sectional curvature; shape operator; integral curve of the characteristic vector field; holomorphic distributions; homogeneous curve
UR - http://eudml.org/doc/294532
ER -
References
top- Adachi, T., Bao, T., Maeda, S., 10.14492/hokmj/1392906097, Hokkaido Math. J. 43 (2014), 137-150. (2014) Zbl1288.53045MR3178483DOI10.14492/hokmj/1392906097
- Berndt, J., 10.1007/PL00004673, Math. Z. 229 (1998), 589-600. (1998) Zbl0929.53025MR1664778DOI10.1007/PL00004673
- Berndt, J., Tamaru, H., 10.1090/S0002-9947-07-04305-X, Trans. Am. Math. Soc. 359 (2007), 3425-3438. (2007) Zbl1117.53041MR2299462DOI10.1090/S0002-9947-07-04305-X
- Chen, B.-Y., Maeda, S., 10.3836/tjm/1255958318, Tokyo J. Math. 24 (2001), 133-152. (2001) Zbl1015.53039MR1844424DOI10.3836/tjm/1255958318
- Hamada, T., Hoshikawa, Y., Tamaru, H., 10.1007/s00022-012-0127-1, J. Geom. 103 (2012), 247-261. (2012) Zbl1266.53057MR2995128DOI10.1007/s00022-012-0127-1
- Kimura, M., Maeda, S., 10.1007/BF01159962, Math. Z. 202 (1989), 299-311. (1989) Zbl0661.53015MR1017573DOI10.1007/BF01159962
- Kon, S. H., Loo, T.-H., 10.1007/s00209-010-0715-4, Math. Z. 269 (2011), 47-58. (2011) Zbl1227.53071MR2836059DOI10.1007/s00209-010-0715-4
- Lohnherr, M., Reckziegel, H., 10.1023/A:1005000122427, Geom. Dedicata 74 (1999), 267-286. (1999) Zbl0932.53018MR1669351DOI10.1023/A:1005000122427
- Maeda, S., 10.1016/j.difgeo.2011.04.048, Differ. Geom. Appl. 29 (2011), s246--s250. (2011) Zbl1225.53056MR2832025DOI10.1016/j.difgeo.2011.04.048
- Maeda, S., Adachi, T., 10.1090/S0002-9939-97-03627-7, Proc. Am. Math. Soc. 125 (1997), 1197-1202. (1997) Zbl0876.53045MR1353391DOI10.1090/S0002-9939-97-03627-7
- Maeda, S., Adachi, T., Kim, Y. H., 10.2969/jmsj/06110315, J. Math. Soc. Japan 61 (2009), 315-325. (2009) Zbl1159.53012MR2272881DOI10.2969/jmsj/06110315
- Maeda, S., Ohnita, Y., 10.1007/BF02424315, Geom. Dedicata 30 (1989), 93-114. (1989) Zbl0669.53042MR0995941DOI10.1007/BF02424315
- Maeda, S., Tanabe, H., 10.1007/s00013-015-0839-1, Arch. Math. 105 (2015), 593-599. (2015) Zbl1329.53032MR3422863DOI10.1007/s00013-015-0839-1
- Niebergall, R., Ryan, P. J., Real hypersurfaces in complex space forms, Tight and Taut Submanifolds. Based on the Workshop on Differential Systems, Submanifolds and Control Theory, Berkeley, CA, USA, 1994 Math. Sci. Res. Inst. Publ. 32, Cambridge University Press, Cambridge (1997), 233-305. (1997) Zbl0904.53005MR1486875
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.