Tetravalent half-arc-transitive graphs of order
Hailin Liu; Bengong Lou; Bo Ling
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 2, page 391-401
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiu, Hailin, Lou, Bengong, and Ling, Bo. "Tetravalent half-arc-transitive graphs of order $p^2q^2$." Czechoslovak Mathematical Journal 69.2 (2019): 391-401. <http://eudml.org/doc/294536>.
@article{Liu2019,
abstract = {We classify tetravalent $G$-half-arc-transitive graphs $\Gamma $ of order $p^2q^2$, where $G\le \mathop \{\textsf \{Aut\}\}\Gamma $ and $p$, $q$ are distinct odd primes. This result involves a subclass of tetravalent half-arc-transitive graphs of cube-free order.},
author = {Liu, Hailin, Lou, Bengong, Ling, Bo},
journal = {Czechoslovak Mathematical Journal},
keywords = {half-arc-transitive graph; normal Cayley graph; cube-free order},
language = {eng},
number = {2},
pages = {391-401},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Tetravalent half-arc-transitive graphs of order $p^2q^2$},
url = {http://eudml.org/doc/294536},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Liu, Hailin
AU - Lou, Bengong
AU - Ling, Bo
TI - Tetravalent half-arc-transitive graphs of order $p^2q^2$
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 391
EP - 401
AB - We classify tetravalent $G$-half-arc-transitive graphs $\Gamma $ of order $p^2q^2$, where $G\le \mathop {\textsf {Aut}}\Gamma $ and $p$, $q$ are distinct odd primes. This result involves a subclass of tetravalent half-arc-transitive graphs of cube-free order.
LA - eng
KW - half-arc-transitive graph; normal Cayley graph; cube-free order
UR - http://eudml.org/doc/294536
ER -
References
top- Alspach, B., Xu, M. Y., 10.1023/A:1022466626755, J. Algebr. Comb. 3 (1994), 347-355. (1994) Zbl0808.05056MR1293821DOI10.1023/A:1022466626755
- Bouwer, I. Z., 10.4153/CMB-1970-047-8, Can. Math. Bull. 13 (1970), 231-237. (1970) Zbl0205.54601MR0269532DOI10.4153/CMB-1970-047-8
- Bray, J. N., Holt, D. F., Roney-Dougal, C. M., 10.1017/CBO9781139192576, London Mathematical Society Lecture Note Series 407, Cambridge University Press, Cambridge (2013). (2013) Zbl1303.20053MR3098485DOI10.1017/CBO9781139192576
- Chao, C. Y., 10.2307/1995785, Trans. Amer. Math. Soc. 158 (1971), 247-256. (1971) Zbl0217.02403MR0279000DOI10.2307/1995785
- Cheng, Y., Oxley, J., 10.1016/0095-8956(87)90040-2, J. Combin. Theory Ser. B 42 (1987), 196-211. (1987) Zbl0583.05032MR0884254DOI10.1016/0095-8956(87)90040-2
- Dixon, J. D., Mortimer, B., 10.1007/978-1-4612-0731-3, Graduate Texts in Mathematics 163 Springer, New York (1996). (1996) Zbl0951.20001MR1409812DOI10.1007/978-1-4612-0731-3
- Du, S. F., Xu, M. Y., 10.1080/00927879908826426, Commun. Algebra 27 (1999), 163-171. (1999) Zbl0922.05032MR1668232DOI10.1080/00927879908826426
- Feng, Y. Q., Kwak, J. H., Wang, X., Zhou, J. X., 10.1007/s10801-010-0257-1, J. Algebr. Comb. 33 (2011), 543-553. (2011) Zbl1226.05134MR2781962DOI10.1007/s10801-010-0257-1
- Feng, Y. Q., Kwak, J. H., Xu, M. Y., Zhou, J. X., 10.1016/j.ejc.2007.05.004, Eur. J. Comb. 29 (2008), 555-567. (2008) Zbl1159.05024MR2397337DOI10.1016/j.ejc.2007.05.004
- Godsil, C. D., 10.1007/BF02579330, Combinatorica 1 (1981), 243-256. (1981) Zbl0489.05028MR0637829DOI10.1007/BF02579330
- Herzog, M., 10.1016/0021-8693(68)90088-4, J. Algebra 10 (1968), 383-388. (1968) Zbl0167.29101MR0233881DOI10.1016/0021-8693(68)90088-4
- Holt, D. F., 10.1002/jgt.3190050210, J. Graph Theory 5 (1981), 201-204. (1981) Zbl0423.05020MR0615008DOI10.1002/jgt.3190050210
- Hujdurović, A., Kutnar, K., Marušič, D., 10.1016/j.jcta.2014.01.005, J. Comb. Theory, Ser. A 124 (2014), 114-129. (2014) Zbl1283.05126MR3176193DOI10.1016/j.jcta.2014.01.005
- Huppert, B., 10.1007/978-3-642-64981-3, Die Grundlehren der mathematischen Wissenschaften 134, Springer, Berlin German (1967). (1967) Zbl0217.07201MR0224703DOI10.1007/978-3-642-64981-3
- Huppert, B., Lempken, W., Simple groups of order divisible by at most four primes, Izv. Gomel. Gos. Univ. Im. F. Skoriny 16 (2000), 64-75. (2000) Zbl1159.20303
- Kutnar, K., Marušič, D., Šparl, P., Wang, R. J., Xu, M. Y., 10.1016/j.ejc.2013.04.004, Eur. J. Comb. 34 (2013), 1158-1176. (2013) Zbl1292.05134MR3055230DOI10.1016/j.ejc.2013.04.004
- Li, C. H., 10.1090/S0002-9939-08-09217-4, Proc. Am. Math. Soc. 136 (2008), 1905-1910. (2008) Zbl1157.05028MR2383495DOI10.1090/S0002-9939-08-09217-4
- Li, C. H., Lu, Z. P., Zhang, H., 10.1016/j.jctb.2005.07.003, J. Comb. Theory. Ser. B 96 (2006), 164-181. (2006) Zbl1078.05039MR2185986DOI10.1016/j.jctb.2005.07.003
- Li, C. H., Sim, H. S., 10.1006/jctb.2000.1992, J. Comb. Theory Ser. B 81 (2001), 45-57. (2001) Zbl1024.05038MR1809425DOI10.1006/jctb.2000.1992
- McKay, B. D., 10.2307/2006085, Math. Comput. 33 (1979), 1101-1121. (1979) Zbl0411.05046MR0528064DOI10.2307/2006085
- Pan, J., Liu, Y., Huang, Z., Liu, C., 10.1007/s11425-013-4708-8, Sci. China Math. 57 (2014), 293-302. (2014) Zbl1286.05071MR3150279DOI10.1007/s11425-013-4708-8
- Praeger, C. E., 10.1017/S0004972700036340, Bull. Aust. Math. Soc. 60 (1999), 207-220. (1999) Zbl0939.05047MR1711938DOI10.1017/S0004972700036340
- Suzuki, M., Group Theory II, Grundlehren der mathematischen Wissenschaften 248, Springer, New York (1986). (1986) Zbl0586.20001MR0815926
- Taylor, D. E., Xu, M. Y., 10.1017/S1446788700036090, J. Aust. Math. Soc. Ser. A 57 (1994), 113-124. (1994) Zbl0808.05055MR1279290DOI10.1017/S1446788700036090
- Tutte, W. T., Connectivity in Graphs, Mathematical Expositions 15, University of Toronto Press, Toronto; Oxford University Press, London (1966). (1966) Zbl0146.45603MR0210617
- Wang, R. J., 10.1080/00927879408824885, Commun. Algebra 22 (1994), 915-927. (1994) Zbl0795.05072MR1261014DOI10.1080/00927879408824885
- Wang, X., Feng, Y. Q., 10.26493/1855-3974.125.164, Ars Math. Contemp. 3 (2010), 151-163. (2010) Zbl1213.05129MR2729365DOI10.26493/1855-3974.125.164
- Wang, X., Feng, Y. Q., 10.1016/j.disc.2009.11.020, Discrete Math. 310 (2010), 1721-1724. (2010) Zbl1223.05119MR2610274DOI10.1016/j.disc.2009.11.020
- Wang, Y., Feng, Y. Q., 10.26493/1855-3974.964.594, Ars Math. Contemp. 13 (2017), 343-353. (2017) Zbl1380.05042MR3720537DOI10.26493/1855-3974.964.594
- Wang, X., Feng, Y., Zhou, J., Wang, J., Ma, Q., 10.1016/j.disc.2015.12.022, Discrete Math. 339 (2016), 1566-1573. (2016) Zbl1333.05144MR3475570DOI10.1016/j.disc.2015.12.022
- Wilson, S., Potočnik, P., A census of edge-transitive tetravalent graphs, Mini-Census, Available at https://www.fmf.uni-lj.si/ {potocnik/work.htm}.
- Xu, M. Y., 10.1023/A:1022440002282, J. Algebr. Comb. 1 (1992), 275-282. (1992) ZblA0786.05044MR1194079DOI10.1023/A:1022440002282
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.