Tetravalent half-arc-transitive graphs of order p 2 q 2

Hailin Liu; Bengong Lou; Bo Ling

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 2, page 391-401
  • ISSN: 0011-4642

Abstract

top
We classify tetravalent G -half-arc-transitive graphs Γ of order p 2 q 2 , where G 𝖠𝗎𝗍 Γ and p , q are distinct odd primes. This result involves a subclass of tetravalent half-arc-transitive graphs of cube-free order.

How to cite

top

Liu, Hailin, Lou, Bengong, and Ling, Bo. "Tetravalent half-arc-transitive graphs of order $p^2q^2$." Czechoslovak Mathematical Journal 69.2 (2019): 391-401. <http://eudml.org/doc/294536>.

@article{Liu2019,
abstract = {We classify tetravalent $G$-half-arc-transitive graphs $\Gamma $ of order $p^2q^2$, where $G\le \mathop \{\textsf \{Aut\}\}\Gamma $ and $p$, $q$ are distinct odd primes. This result involves a subclass of tetravalent half-arc-transitive graphs of cube-free order.},
author = {Liu, Hailin, Lou, Bengong, Ling, Bo},
journal = {Czechoslovak Mathematical Journal},
keywords = {half-arc-transitive graph; normal Cayley graph; cube-free order},
language = {eng},
number = {2},
pages = {391-401},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Tetravalent half-arc-transitive graphs of order $p^2q^2$},
url = {http://eudml.org/doc/294536},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Liu, Hailin
AU - Lou, Bengong
AU - Ling, Bo
TI - Tetravalent half-arc-transitive graphs of order $p^2q^2$
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 391
EP - 401
AB - We classify tetravalent $G$-half-arc-transitive graphs $\Gamma $ of order $p^2q^2$, where $G\le \mathop {\textsf {Aut}}\Gamma $ and $p$, $q$ are distinct odd primes. This result involves a subclass of tetravalent half-arc-transitive graphs of cube-free order.
LA - eng
KW - half-arc-transitive graph; normal Cayley graph; cube-free order
UR - http://eudml.org/doc/294536
ER -

References

top
  1. Alspach, B., Xu, M. Y., 10.1023/A:1022466626755, J. Algebr. Comb. 3 (1994), 347-355. (1994) Zbl0808.05056MR1293821DOI10.1023/A:1022466626755
  2. Bouwer, I. Z., 10.4153/CMB-1970-047-8, Can. Math. Bull. 13 (1970), 231-237. (1970) Zbl0205.54601MR0269532DOI10.4153/CMB-1970-047-8
  3. Bray, J. N., Holt, D. F., Roney-Dougal, C. M., 10.1017/CBO9781139192576, London Mathematical Society Lecture Note Series 407, Cambridge University Press, Cambridge (2013). (2013) Zbl1303.20053MR3098485DOI10.1017/CBO9781139192576
  4. Chao, C. Y., 10.2307/1995785, Trans. Amer. Math. Soc. 158 (1971), 247-256. (1971) Zbl0217.02403MR0279000DOI10.2307/1995785
  5. Cheng, Y., Oxley, J., 10.1016/0095-8956(87)90040-2, J. Combin. Theory Ser. B 42 (1987), 196-211. (1987) Zbl0583.05032MR0884254DOI10.1016/0095-8956(87)90040-2
  6. Dixon, J. D., Mortimer, B., 10.1007/978-1-4612-0731-3, Graduate Texts in Mathematics 163 Springer, New York (1996). (1996) Zbl0951.20001MR1409812DOI10.1007/978-1-4612-0731-3
  7. Du, S. F., Xu, M. Y., 10.1080/00927879908826426, Commun. Algebra 27 (1999), 163-171. (1999) Zbl0922.05032MR1668232DOI10.1080/00927879908826426
  8. Feng, Y. Q., Kwak, J. H., Wang, X., Zhou, J. X., 10.1007/s10801-010-0257-1, J. Algebr. Comb. 33 (2011), 543-553. (2011) Zbl1226.05134MR2781962DOI10.1007/s10801-010-0257-1
  9. Feng, Y. Q., Kwak, J. H., Xu, M. Y., Zhou, J. X., 10.1016/j.ejc.2007.05.004, Eur. J. Comb. 29 (2008), 555-567. (2008) Zbl1159.05024MR2397337DOI10.1016/j.ejc.2007.05.004
  10. Godsil, C. D., 10.1007/BF02579330, Combinatorica 1 (1981), 243-256. (1981) Zbl0489.05028MR0637829DOI10.1007/BF02579330
  11. Herzog, M., 10.1016/0021-8693(68)90088-4, J. Algebra 10 (1968), 383-388. (1968) Zbl0167.29101MR0233881DOI10.1016/0021-8693(68)90088-4
  12. Holt, D. F., 10.1002/jgt.3190050210, J. Graph Theory 5 (1981), 201-204. (1981) Zbl0423.05020MR0615008DOI10.1002/jgt.3190050210
  13. Hujdurović, A., Kutnar, K., Marušič, D., 10.1016/j.jcta.2014.01.005, J. Comb. Theory, Ser. A 124 (2014), 114-129. (2014) Zbl1283.05126MR3176193DOI10.1016/j.jcta.2014.01.005
  14. Huppert, B., 10.1007/978-3-642-64981-3, Die Grundlehren der mathematischen Wissenschaften 134, Springer, Berlin German (1967). (1967) Zbl0217.07201MR0224703DOI10.1007/978-3-642-64981-3
  15. Huppert, B., Lempken, W., Simple groups of order divisible by at most four primes, Izv. Gomel. Gos. Univ. Im. F. Skoriny 16 (2000), 64-75. (2000) Zbl1159.20303
  16. Kutnar, K., Marušič, D., Šparl, P., Wang, R. J., Xu, M. Y., 10.1016/j.ejc.2013.04.004, Eur. J. Comb. 34 (2013), 1158-1176. (2013) Zbl1292.05134MR3055230DOI10.1016/j.ejc.2013.04.004
  17. Li, C. H., 10.1090/S0002-9939-08-09217-4, Proc. Am. Math. Soc. 136 (2008), 1905-1910. (2008) Zbl1157.05028MR2383495DOI10.1090/S0002-9939-08-09217-4
  18. Li, C. H., Lu, Z. P., Zhang, H., 10.1016/j.jctb.2005.07.003, J. Comb. Theory. Ser. B 96 (2006), 164-181. (2006) Zbl1078.05039MR2185986DOI10.1016/j.jctb.2005.07.003
  19. Li, C. H., Sim, H. S., 10.1006/jctb.2000.1992, J. Comb. Theory Ser. B 81 (2001), 45-57. (2001) Zbl1024.05038MR1809425DOI10.1006/jctb.2000.1992
  20. McKay, B. D., 10.2307/2006085, Math. Comput. 33 (1979), 1101-1121. (1979) Zbl0411.05046MR0528064DOI10.2307/2006085
  21. Pan, J., Liu, Y., Huang, Z., Liu, C., 10.1007/s11425-013-4708-8, Sci. China Math. 57 (2014), 293-302. (2014) Zbl1286.05071MR3150279DOI10.1007/s11425-013-4708-8
  22. Praeger, C. E., 10.1017/S0004972700036340, Bull. Aust. Math. Soc. 60 (1999), 207-220. (1999) Zbl0939.05047MR1711938DOI10.1017/S0004972700036340
  23. Suzuki, M., Group Theory II, Grundlehren der mathematischen Wissenschaften 248, Springer, New York (1986). (1986) Zbl0586.20001MR0815926
  24. Taylor, D. E., Xu, M. Y., 10.1017/S1446788700036090, J. Aust. Math. Soc. Ser. A 57 (1994), 113-124. (1994) Zbl0808.05055MR1279290DOI10.1017/S1446788700036090
  25. Tutte, W. T., Connectivity in Graphs, Mathematical Expositions 15, University of Toronto Press, Toronto; Oxford University Press, London (1966). (1966) Zbl0146.45603MR0210617
  26. Wang, R. J., 10.1080/00927879408824885, Commun. Algebra 22 (1994), 915-927. (1994) Zbl0795.05072MR1261014DOI10.1080/00927879408824885
  27. Wang, X., Feng, Y. Q., 10.26493/1855-3974.125.164, Ars Math. Contemp. 3 (2010), 151-163. (2010) Zbl1213.05129MR2729365DOI10.26493/1855-3974.125.164
  28. Wang, X., Feng, Y. Q., 10.1016/j.disc.2009.11.020, Discrete Math. 310 (2010), 1721-1724. (2010) Zbl1223.05119MR2610274DOI10.1016/j.disc.2009.11.020
  29. Wang, Y., Feng, Y. Q., 10.26493/1855-3974.964.594, Ars Math. Contemp. 13 (2017), 343-353. (2017) Zbl1380.05042MR3720537DOI10.26493/1855-3974.964.594
  30. Wang, X., Feng, Y., Zhou, J., Wang, J., Ma, Q., 10.1016/j.disc.2015.12.022, Discrete Math. 339 (2016), 1566-1573. (2016) Zbl1333.05144MR3475570DOI10.1016/j.disc.2015.12.022
  31. Wilson, S., Potočnik, P., A census of edge-transitive tetravalent graphs, Mini-Census, Available at https://www.fmf.uni-lj.si/ {potocnik/work.htm}. 
  32. Xu, M. Y., 10.1023/A:1022440002282, J. Algebr. Comb. 1 (1992), 275-282. (1992) ZblA0786.05044MR1194079DOI10.1023/A:1022440002282

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.