Rank theory approach to ridge, LASSO, preliminary test and Stein-type estimators: Comparative study

A. K. Md. Ehsanes Saleh; Radim Navrátil

Kybernetika (2018)

  • Volume: 54, Issue: 5, page 958-977
  • ISSN: 0023-5954

Abstract

top
In the development of efficient predictive models, the key is to identify suitable predictors for a given linear model. For the first time, this paper provides a comparative study of ridge regression, LASSO, preliminary test and Stein-type estimators based on the theory of rank statistics. Under the orthonormal design matrix of a given linear model, we find that the rank based ridge estimator outperforms the usual rank estimator, restricted R-estimator, rank-based LASSO, preliminary test and Stein-type R-estimators uniformly. On the other hand, neither LASSO nor the usual R-estimator, preliminary test and Stein-type R-estimators outperform the other. The region of domination of LASSO over all the R-estimators (except the ridge R-estimator) is the interval around the origin of the parameter space. Finally, we observe that the L 2 -risk of the restricted R-estimator equals the lower bound on the L 2 -risk of LASSO. Our conclusions are based on L 2 -risk analysis and relative L 2 -risk efficiencies with related tables and graphs.

How to cite

top

Saleh, A. K. Md. Ehsanes, and Navrátil, Radim. "Rank theory approach to ridge, LASSO, preliminary test and Stein-type estimators: Comparative study." Kybernetika 54.5 (2018): 958-977. <http://eudml.org/doc/294545>.

@article{Saleh2018,
abstract = {In the development of efficient predictive models, the key is to identify suitable predictors for a given linear model. For the first time, this paper provides a comparative study of ridge regression, LASSO, preliminary test and Stein-type estimators based on the theory of rank statistics. Under the orthonormal design matrix of a given linear model, we find that the rank based ridge estimator outperforms the usual rank estimator, restricted R-estimator, rank-based LASSO, preliminary test and Stein-type R-estimators uniformly. On the other hand, neither LASSO nor the usual R-estimator, preliminary test and Stein-type R-estimators outperform the other. The region of domination of LASSO over all the R-estimators (except the ridge R-estimator) is the interval around the origin of the parameter space. Finally, we observe that the L$_2$-risk of the restricted R-estimator equals the lower bound on the L$_2$-risk of LASSO. Our conclusions are based on L$_2$-risk analysis and relative L$_2$-risk efficiencies with related tables and graphs.},
author = {Saleh, A. K. Md. Ehsanes, Navrátil, Radim},
journal = {Kybernetika},
keywords = {efficiency of LASSO; penalty estimators; preliminary test; Stein-type estimator; ridge estimator; L$_2$-risk function},
language = {eng},
number = {5},
pages = {958-977},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Rank theory approach to ridge, LASSO, preliminary test and Stein-type estimators: Comparative study},
url = {http://eudml.org/doc/294545},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Saleh, A. K. Md. Ehsanes
AU - Navrátil, Radim
TI - Rank theory approach to ridge, LASSO, preliminary test and Stein-type estimators: Comparative study
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 5
SP - 958
EP - 977
AB - In the development of efficient predictive models, the key is to identify suitable predictors for a given linear model. For the first time, this paper provides a comparative study of ridge regression, LASSO, preliminary test and Stein-type estimators based on the theory of rank statistics. Under the orthonormal design matrix of a given linear model, we find that the rank based ridge estimator outperforms the usual rank estimator, restricted R-estimator, rank-based LASSO, preliminary test and Stein-type R-estimators uniformly. On the other hand, neither LASSO nor the usual R-estimator, preliminary test and Stein-type R-estimators outperform the other. The region of domination of LASSO over all the R-estimators (except the ridge R-estimator) is the interval around the origin of the parameter space. Finally, we observe that the L$_2$-risk of the restricted R-estimator equals the lower bound on the L$_2$-risk of LASSO. Our conclusions are based on L$_2$-risk analysis and relative L$_2$-risk efficiencies with related tables and graphs.
LA - eng
KW - efficiency of LASSO; penalty estimators; preliminary test; Stein-type estimator; ridge estimator; L$_2$-risk function
UR - http://eudml.org/doc/294545
ER -

References

top
  1. A, A. Belloni, Chernozhukov, V., 10.3150/11-bej410, Bernoulli 19 (2013), 521-547. MR3037163DOI10.3150/11-bej410
  2. Breiman, L., 10.1214/aos/1032181158, Ann. Statist. 24 (1996), 2350-2383. MR1425957DOI10.1214/aos/1032181158
  3. Donoho, D. L., Johnstone, I. M., 10.1214/aos/1024691081, Ann. Statist. 26 (1994), 879-921. MR1635414DOI10.1214/aos/1024691081
  4. Draper, N. R., Nostrand, R. C. Van, 10.2307/1268284, Technometrics 21 (1979), 451-466. MR0555086DOI10.2307/1268284
  5. Fan, J., Li, R., 10.1198/016214501753382273, J. Amer. Statist. Assoc. 96 (2001), 1348-1360. MR1946581DOI10.1198/016214501753382273
  6. Frank, L. E., Friedman, J. H., 10.1080/00401706.1993.10485033, Technometrics 35 (1993), 109-135. DOI10.1080/00401706.1993.10485033
  7. Hoerl, E., Kennard, R. W., 10.1080/00401706.1970.10488634, Technometrics 12 (1970), 55-67. DOI10.1080/00401706.1970.10488634
  8. James, W., Stein, C., Estimation with quadratic loss., In: Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, University of California Press 1961, pp. 361-379. MR0133191
  9. Jurečková, J., 10.1214/aoms/1177693245, Ann. Math. Statist. 42 (1971), 1328-1338. MR0295487DOI10.1214/aoms/1177693245
  10. Hansen, B. E., The risk of James-Stein and Lasso shrinkage., Econometric Rev. 35 (2015), 456-470. MR3511027
  11. Saleh, A. K. Md. E., 10.1002/0471773751, John Wiley and Sons, New York 2006. MR2218139DOI10.1002/0471773751
  12. Saleh, A. K. Md. E., Arashi, M., Norouzirad, M., Kibria, B. M. G., On shrinkage and selection: ANOVA MODEL., J. Statist. Res. 51 (2017), 165-191. MR3753200
  13. Stein, C., Inadmissibility of the usual estimator for the mean of a multivariate normal distribution., In: Proc. Third Berkeley Symposium on Mathematical Statistics and Probability, University of California Press 1956, pp. 197-206. MR0084922
  14. Tibshirani, R., 10.1111/j.2517-6161.1996.tb02080.x, J. Royal Statist. Soc., Series B (Methodological) 58 (1996), 267-288. MR1379242DOI10.1111/j.2517-6161.1996.tb02080.x
  15. Tikhonov, A. N., Solution of incorrectly formulated problems and the regularization method., Doklady Akademii Nauk SSSR 151 (1963), 501-504. MR0162377
  16. Zou, H., 10.1198/016214506000000735, J. Amer. Statist. Assoc. 101 (2006), 1418-1429. MR2279469DOI10.1198/016214506000000735
  17. Zou, H., Hastie, T., 10.1111/j.1467-9868.2005.00503.x, J. Royal Stat. Soc. Ser. B Stat. Methodol. 67 (2005), 301-320. MR2137327DOI10.1111/j.1467-9868.2005.00503.x

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.