Rank theory approach to ridge, LASSO, preliminary test and Stein-type estimators: Comparative study
A. K. Md. Ehsanes Saleh; Radim Navrátil
Kybernetika (2018)
- Volume: 54, Issue: 5, page 958-977
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topSaleh, A. K. Md. Ehsanes, and Navrátil, Radim. "Rank theory approach to ridge, LASSO, preliminary test and Stein-type estimators: Comparative study." Kybernetika 54.5 (2018): 958-977. <http://eudml.org/doc/294545>.
@article{Saleh2018,
abstract = {In the development of efficient predictive models, the key is to identify suitable predictors for a given linear model. For the first time, this paper provides a comparative study of ridge regression, LASSO, preliminary test and Stein-type estimators based on the theory of rank statistics. Under the orthonormal design matrix of a given linear model, we find that the rank based ridge estimator outperforms the usual rank estimator, restricted R-estimator, rank-based LASSO, preliminary test and Stein-type R-estimators uniformly. On the other hand, neither LASSO nor the usual R-estimator, preliminary test and Stein-type R-estimators outperform the other. The region of domination of LASSO over all the R-estimators (except the ridge R-estimator) is the interval around the origin of the parameter space. Finally, we observe that the L$_2$-risk of the restricted R-estimator equals the lower bound on the L$_2$-risk of LASSO. Our conclusions are based on L$_2$-risk analysis and relative L$_2$-risk efficiencies with related tables and graphs.},
author = {Saleh, A. K. Md. Ehsanes, Navrátil, Radim},
journal = {Kybernetika},
keywords = {efficiency of LASSO; penalty estimators; preliminary test; Stein-type estimator; ridge estimator; L$_2$-risk function},
language = {eng},
number = {5},
pages = {958-977},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Rank theory approach to ridge, LASSO, preliminary test and Stein-type estimators: Comparative study},
url = {http://eudml.org/doc/294545},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Saleh, A. K. Md. Ehsanes
AU - Navrátil, Radim
TI - Rank theory approach to ridge, LASSO, preliminary test and Stein-type estimators: Comparative study
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 5
SP - 958
EP - 977
AB - In the development of efficient predictive models, the key is to identify suitable predictors for a given linear model. For the first time, this paper provides a comparative study of ridge regression, LASSO, preliminary test and Stein-type estimators based on the theory of rank statistics. Under the orthonormal design matrix of a given linear model, we find that the rank based ridge estimator outperforms the usual rank estimator, restricted R-estimator, rank-based LASSO, preliminary test and Stein-type R-estimators uniformly. On the other hand, neither LASSO nor the usual R-estimator, preliminary test and Stein-type R-estimators outperform the other. The region of domination of LASSO over all the R-estimators (except the ridge R-estimator) is the interval around the origin of the parameter space. Finally, we observe that the L$_2$-risk of the restricted R-estimator equals the lower bound on the L$_2$-risk of LASSO. Our conclusions are based on L$_2$-risk analysis and relative L$_2$-risk efficiencies with related tables and graphs.
LA - eng
KW - efficiency of LASSO; penalty estimators; preliminary test; Stein-type estimator; ridge estimator; L$_2$-risk function
UR - http://eudml.org/doc/294545
ER -
References
top- A, A. Belloni, Chernozhukov, V., 10.3150/11-bej410, Bernoulli 19 (2013), 521-547. MR3037163DOI10.3150/11-bej410
- Breiman, L., 10.1214/aos/1032181158, Ann. Statist. 24 (1996), 2350-2383. MR1425957DOI10.1214/aos/1032181158
- Donoho, D. L., Johnstone, I. M., 10.1214/aos/1024691081, Ann. Statist. 26 (1994), 879-921. MR1635414DOI10.1214/aos/1024691081
- Draper, N. R., Nostrand, R. C. Van, 10.2307/1268284, Technometrics 21 (1979), 451-466. MR0555086DOI10.2307/1268284
- Fan, J., Li, R., 10.1198/016214501753382273, J. Amer. Statist. Assoc. 96 (2001), 1348-1360. MR1946581DOI10.1198/016214501753382273
- Frank, L. E., Friedman, J. H., 10.1080/00401706.1993.10485033, Technometrics 35 (1993), 109-135. DOI10.1080/00401706.1993.10485033
- Hoerl, E., Kennard, R. W., 10.1080/00401706.1970.10488634, Technometrics 12 (1970), 55-67. DOI10.1080/00401706.1970.10488634
- James, W., Stein, C., Estimation with quadratic loss., In: Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, University of California Press 1961, pp. 361-379. MR0133191
- Jurečková, J., 10.1214/aoms/1177693245, Ann. Math. Statist. 42 (1971), 1328-1338. MR0295487DOI10.1214/aoms/1177693245
- Hansen, B. E., The risk of James-Stein and Lasso shrinkage., Econometric Rev. 35 (2015), 456-470. MR3511027
- Saleh, A. K. Md. E., 10.1002/0471773751, John Wiley and Sons, New York 2006. MR2218139DOI10.1002/0471773751
- Saleh, A. K. Md. E., Arashi, M., Norouzirad, M., Kibria, B. M. G., On shrinkage and selection: ANOVA MODEL., J. Statist. Res. 51 (2017), 165-191. MR3753200
- Stein, C., Inadmissibility of the usual estimator for the mean of a multivariate normal distribution., In: Proc. Third Berkeley Symposium on Mathematical Statistics and Probability, University of California Press 1956, pp. 197-206. MR0084922
- Tibshirani, R., 10.1111/j.2517-6161.1996.tb02080.x, J. Royal Statist. Soc., Series B (Methodological) 58 (1996), 267-288. MR1379242DOI10.1111/j.2517-6161.1996.tb02080.x
- Tikhonov, A. N., Solution of incorrectly formulated problems and the regularization method., Doklady Akademii Nauk SSSR 151 (1963), 501-504. MR0162377
- Zou, H., 10.1198/016214506000000735, J. Amer. Statist. Assoc. 101 (2006), 1418-1429. MR2279469DOI10.1198/016214506000000735
- Zou, H., Hastie, T., 10.1111/j.1467-9868.2005.00503.x, J. Royal Stat. Soc. Ser. B Stat. Methodol. 67 (2005), 301-320. MR2137327DOI10.1111/j.1467-9868.2005.00503.x
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.